Nuprl Lemma : derivative-rsqrt-function
∀I:Interval
  (iproper(I)
  
⇒ (∀f,f':I ⟶ℝ.
        ((∀x:{x:ℝ| x ∈ I} . (r0 < f[x]))
        
⇒ (∀x,y:{x:ℝ| x ∈ I} .  ((x = y) 
⇒ (f'[x] = f'[y])))
        
⇒ (∀a:{a:ℝ| a ∈ I} . ∀b:{b:ℝ| (b ∈ I) ∧ (a ≤ b)} .  ∃c:{t:ℝ| t ∈ [a, b]} . ∀x:{t:ℝ| t ∈ [a, b]} . (f[c] ≤ f[x])\000C)
        
⇒ d(f[x])/dx = λx.f'[x] on I
        
⇒ d(rsqrt(f[x]))/dx = λx.(f'[x]/r(2) * rsqrt(f[x])) on I)))
Proof
Definitions occuring in Statement : 
derivative: d(f[x])/dx = λz.g[z] on I
, 
rsqrt: rsqrt(x)
, 
rfun: I ⟶ℝ
, 
rccint: [l, u]
, 
i-member: r ∈ I
, 
iproper: iproper(I)
, 
interval: Interval
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rless: x < y
, 
req: x = y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
label: ...$L... t
, 
rfun: I ⟶ℝ
, 
so_apply: x[s]
, 
prop: ℙ
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
top: Top
, 
guard: {T}
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
cand: A c∧ B
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
true: True
, 
uiff: uiff(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rfun-eq: rfun-eq(I;f;g)
, 
r-ap: f(x)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
rat_term_to_real: rat_term_to_real(f;t)
, 
rtermDivide: num "/" denom
, 
rat_term_ind: rat_term_ind, 
rtermVar: rtermVar(var)
, 
rtermMultiply: left "*" right
, 
rtermConstant: "const"
, 
pi1: fst(t)
, 
pi2: snd(t)
Lemmas referenced : 
derivative_wf, 
real_wf, 
i-member_wf, 
rleq_wf, 
rccint_wf, 
i-member-between, 
sq_stable__i-member, 
member_rccint_lemma, 
istype-void, 
sq_stable__rleq, 
req_wf, 
rless_wf, 
int-to-real_wf, 
rfun_wf, 
iproper_wf, 
interval_wf, 
chain-rule, 
roiint_wf, 
iproper-roiint, 
derivative-rsqrt, 
rsqrt_wf, 
member_roiint_lemma, 
rleq_weakening_rless, 
rdiv_wf, 
rmul_wf, 
rsqrt-positive-iff, 
rless-implies-rless, 
rmul-is-positive, 
rless-int, 
rsub_wf, 
itermSubtract_wf, 
itermVar_wf, 
itermConstant_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
has-minimum-maps-compact, 
continuous-implies-functional, 
differentiable-continuous, 
proper-continuous-is-continuous, 
sq_stable__rless, 
subtype_rel_sets_simple, 
rless_transitivity1, 
rleq_weakening, 
req_weakening, 
req_functionality, 
rdiv_functionality, 
rmul_functionality, 
rsqrt_functionality, 
derivative_functionality, 
assert-rat-term-eq2, 
rtermMultiply_wf, 
rtermDivide_wf, 
rtermConstant_wf, 
rtermVar_wf, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
setIsType, 
hypothesis, 
because_Cache, 
functionIsType, 
productIsType, 
setElimination, 
rename, 
dependent_set_memberEquality_alt, 
dependent_functionElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productElimination, 
isect_memberEquality_alt, 
voidElimination, 
natural_numberEquality, 
inhabitedIsType, 
independent_isectElimination, 
closedConclusion, 
inrFormation_alt, 
inlFormation_alt, 
independent_pairFormation, 
approximateComputation, 
int_eqEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
equalityElimination, 
int_eqReduceTrueSq, 
dependent_pairFormation_alt, 
equalityIstype, 
promote_hyp, 
instantiate, 
cumulativity, 
int_eqReduceFalseSq
Latex:
\mforall{}I:Interval
    (iproper(I)
    {}\mRightarrow{}  (\mforall{}f,f':I  {}\mrightarrow{}\mBbbR{}.
                ((\mforall{}x:\{x:\mBbbR{}|  x  \mmember{}  I\}  .  (r0  <  f[x]))
                {}\mRightarrow{}  (\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (f'[x]  =  f'[y])))
                {}\mRightarrow{}  (\mforall{}a:\{a:\mBbbR{}|  a  \mmember{}  I\}  .  \mforall{}b:\{b:\mBbbR{}|  (b  \mmember{}  I)  \mwedge{}  (a  \mleq{}  b)\}  .
                            \mexists{}c:\{t:\mBbbR{}|  t  \mmember{}  [a,  b]\}  .  \mforall{}x:\{t:\mBbbR{}|  t  \mmember{}  [a,  b]\}  .  (f[c]  \mleq{}  f[x]))
                {}\mRightarrow{}  d(f[x])/dx  =  \mlambda{}x.f'[x]  on  I
                {}\mRightarrow{}  d(rsqrt(f[x]))/dx  =  \mlambda{}x.(f'[x]/r(2)  *  rsqrt(f[x]))  on  I)))
Date html generated:
2019_10_31-AM-06_11_52
Last ObjectModification:
2019_04_03-AM-00_26_55
Theory : reals_2
Home
Index