Nuprl Lemma : altW-item_wf
∀[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:altW(A;a.B[a])]. ∀[b:coW-dom(a.B[a];w)].  (altW-item(w;b) ∈ altW(A;a.B[a]))
Proof
Definitions occuring in Statement : 
altW-item: altW-item(w;b)
, 
altW: altW(A;a.B[a])
, 
coW-dom: coW-dom(a.B[a];w)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
prop: ℙ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
altW: altW(A;a.B[a])
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
altW-item: altW-item(w;b)
, 
true: True
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
top: Top
, 
subtract: n - m
, 
sq_stable: SqStable(P)
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
false: False
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
coW-wfdd: coW-wfdd(a.B[a];w)
, 
nequal: a ≠ b ∈ T 
, 
int_upper: {i...}
, 
ge: i ≥ j 
, 
assert: ↑b
, 
bnot: ¬bb
, 
guard: {T}
, 
sq_type: SQType(T)
, 
exists: ∃x:A. B[x]
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
copath-nil: ()
, 
pi1: fst(t)
, 
copath-length: copath-length(p)
, 
copath: copath(a.B[a];w)
Lemmas referenced : 
altW_wf, 
coW-dom_wf, 
coW-wfdd_wf, 
coW-item_wf, 
copathAgree_wf, 
le_wf, 
le-add-cancel, 
add-zero, 
add_functionality_wrt_le, 
add-commutes, 
add-swap, 
add-associates, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
sq_stable__le, 
not-le-2, 
false_wf, 
decidable__le, 
copath-length_wf, 
equal_wf, 
all_wf, 
copath_wf, 
nat_wf, 
set_wf, 
not-equal-2, 
minus-minus, 
subtract_wf, 
copath-cons_wf, 
nequal-le-implies, 
nat_properties, 
upper_subtype_nat, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
copath-nil_wf, 
assert_of_eq_int, 
eqtt_to_assert, 
bool_wf, 
eq_int_wf, 
assert_of_bnot, 
iff_weakening_uiff, 
iff_transitivity, 
uiff_transitivity, 
not_wf, 
bnot_wf, 
assert_wf, 
equal-wf-T-base, 
copathAgree-nil, 
le_antisymmetry_iff, 
le-add-cancel2, 
minus-zero, 
copathAgree-cons, 
general_arith_equation1, 
bool_cases, 
length-copath-cons, 
istype-false, 
istype-void, 
istype-int, 
istype-le, 
int_subtype_base, 
istype-nat, 
set_subtype_base, 
decidable__int_equal, 
top_wf, 
coPath_wf, 
subtype_rel_product
Rules used in proof : 
universeEquality, 
functionEquality, 
because_Cache, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
dependent_set_memberEquality, 
rename, 
thin, 
setElimination, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
minusEquality, 
voidEquality, 
independent_isectElimination, 
independent_functionElimination, 
productElimination, 
voidElimination, 
independent_pairFormation, 
unionElimination, 
dependent_functionElimination, 
natural_numberEquality, 
addEquality, 
intEquality, 
functionExtensionality, 
cumulativity, 
baseClosed, 
imageMemberEquality, 
imageElimination, 
lambdaFormation, 
hypothesis_subsumption, 
instantiate, 
promote_hyp, 
dependent_pairFormation, 
equalityElimination, 
impliesFunctionality, 
Error :dependent_set_memberEquality_alt, 
Error :lambdaFormation_alt, 
Error :lambdaEquality_alt, 
Error :isect_memberEquality_alt, 
Error :inhabitedIsType, 
Error :universeIsType, 
Error :equalityIstype, 
baseApply, 
closedConclusion, 
sqequalBase
Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:altW(A;a.B[a])].  \mforall{}[b:coW-dom(a.B[a];w)].
    (altW-item(w;b)  \mmember{}  altW(A;a.B[a]))
Date html generated:
2019_06_20-PM-01_12_24
Last ObjectModification:
2019_01_02-PM-01_35_47
Theory : co-recursion-2
Home
Index