Nuprl Lemma : altW-item_wf

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:altW(A;a.B[a])]. ∀[b:coW-dom(a.B[a];w)].  (altW-item(w;b) ∈ altW(A;a.B[a]))


Proof




Definitions occuring in Statement :  altW-item: altW-item(w;b) altW: altW(A;a.B[a]) coW-dom: coW-dom(a.B[a];w) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  prop: so_apply: x[s] so_lambda: λ2x.t[x] altW: altW(A;a.B[a]) member: t ∈ T uall: [x:A]. B[x] altW-item: altW-item(w;b) true: True less_than': less_than'(a;b) le: A ≤ B top: Top subtract: m sq_stable: SqStable(P) uimplies: supposing a uiff: uiff(P;Q) false: False rev_implies:  Q not: ¬A and: P ∧ Q iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) nat: subtype_rel: A ⊆B implies:  Q squash: T all: x:A. B[x] coW-wfdd: coW-wfdd(a.B[a];w) nequal: a ≠ b ∈  int_upper: {i...} ge: i ≥  assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) exists: x:A. B[x] bfalse: ff ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 copath-nil: () pi1: fst(t) copath-length: copath-length(p) copath: copath(a.B[a];w)
Lemmas referenced :  altW_wf coW-dom_wf coW-wfdd_wf coW-item_wf copathAgree_wf le_wf le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-one-mul-top zero-add minus-one-mul minus-add condition-implies-le sq_stable__le not-le-2 false_wf decidable__le copath-length_wf equal_wf all_wf copath_wf nat_wf set_wf not-equal-2 minus-minus subtract_wf copath-cons_wf nequal-le-implies nat_properties upper_subtype_nat neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert copath-nil_wf assert_of_eq_int eqtt_to_assert bool_wf eq_int_wf assert_of_bnot iff_weakening_uiff iff_transitivity uiff_transitivity not_wf bnot_wf assert_wf equal-wf-T-base copathAgree-nil le_antisymmetry_iff le-add-cancel2 minus-zero copathAgree-cons general_arith_equation1 bool_cases length-copath-cons istype-false istype-void istype-int istype-le int_subtype_base istype-nat set_subtype_base decidable__int_equal top_wf coPath_wf subtype_rel_product
Rules used in proof :  universeEquality functionEquality because_Cache isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality hypothesis applyEquality lambdaEquality sqequalRule hypothesisEquality isectElimination extract_by_obid dependent_set_memberEquality rename thin setElimination sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution minusEquality voidEquality independent_isectElimination independent_functionElimination productElimination voidElimination independent_pairFormation unionElimination dependent_functionElimination natural_numberEquality addEquality intEquality functionExtensionality cumulativity baseClosed imageMemberEquality imageElimination lambdaFormation hypothesis_subsumption instantiate promote_hyp dependent_pairFormation equalityElimination impliesFunctionality Error :dependent_set_memberEquality_alt,  Error :lambdaFormation_alt,  Error :lambdaEquality_alt,  Error :isect_memberEquality_alt,  Error :inhabitedIsType,  Error :universeIsType,  Error :equalityIstype,  baseApply closedConclusion sqequalBase

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:altW(A;a.B[a])].  \mforall{}[b:coW-dom(a.B[a];w)].
    (altW-item(w;b)  \mmember{}  altW(A;a.B[a]))



Date html generated: 2019_06_20-PM-01_12_24
Last ObjectModification: 2019_01_02-PM-01_35_47

Theory : co-recursion-2


Home Index