Nuprl Lemma : exp-ratio_wf2

b:{2...}. ∀k:ℕ. ∀M:ℕ+.  (exp-ratio(1;b;0;k;M) ∈ {n:ℕk < b^n} )


Proof




Definitions occuring in Statement :  exp-ratio: exp-ratio(a;b;n;p;q) exp: i^n int_upper: {i...} nat_plus: + nat: less_than: a < b all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  multiply: m natural_number: $n
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] nat: so_lambda: λ2x.t[x] nat_plus: + int_upper: {i...} prop: so_apply: x[s] all: x:A. B[x] implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q exp-ratio: exp-ratio(a;b;n;p;q) decidable: Dec(P) or: P ∨ Q sq_stable: SqStable(P) squash: T guard: {T} bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff subtract: m le: A ≤ B has-value: (a)↓ sq_type: SQType(T) subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q less_than': less_than'(a;b) true: True rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  le_wf nat_wf set_wf less_than_wf exp_wf2 nat_plus_wf int_upper_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma lt_int_wf sq_stable__less_than nat_plus_properties int_upper_properties bool_wf equal-wf-T-base assert_wf le_int_wf bnot_wf uiff_transitivity eqtt_to_assert assert_of_lt_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int equal_wf minus-zero add-zero multiply-is-int-iff itermMultiply_wf int_term_value_mul_lemma false_wf value-type-has-value int-value-type subtype_base_sq int_subtype_base decidable__equal_int intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma one-mul mul-swap exp_step decidable__lt add-subtract-cancel set_subtype_base exp_wf_nat_plus squash_wf true_wf minus-add minus-minus minus-one-mul add-associates minus-one-mul-top add-mul-special zero-mul zero-add not-lt-2 add_functionality_wrt_le add-commutes le-add-cancel primrec-wf-nat-plus nat_plus_subtype_nat exp1 iff_weakening_equal mul_preserves_le exp_add int_upper_subtype_nat le_functionality le_weakening multiply_functionality_wrt_le exp0_lemma not-equal-2 condition-implies-le mul-one
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis sqequalRule lambdaEquality multiplyEquality because_Cache setEquality natural_numberEquality isect_memberFormation lambdaFormation dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality intWeakElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination unionElimination dependent_set_memberEquality imageMemberEquality baseClosed imageElimination equalityElimination productElimination pointwiseFunctionality promote_hyp baseApply closedConclusion callbyvalueReduce addEquality instantiate cumulativity applyEquality minusEquality universeEquality

Latex:
\mforall{}b:\{2...\}.  \mforall{}k:\mBbbN{}.  \mforall{}M:\mBbbN{}\msupplus{}.    (exp-ratio(1;b;0;k;M)  \mmember{}  \{n:\mBbbN{}|  k  <  M  *  b\^{}n\}  )



Date html generated: 2018_05_21-PM-01_03_50
Last ObjectModification: 2018_01_28-PM-02_12_55

Theory : num_thy_1


Home Index