Nuprl Lemma : cantor-to-interval-req
∀a,b,x:ℝ. ∀f:ℕ ⟶ 𝔹.
  ((∀n:ℕ. (x ∈ [fst(cantor-interval(a;b;f;n)), snd(cantor-interval(a;b;f;n))])) 
⇒ (cantor-to-interval(a;b;f) = x))
Proof
Definitions occuring in Statement : 
cantor-to-interval: cantor-to-interval(a;b;f)
, 
cantor-interval: cantor-interval(a;b;f;n)
, 
rccint: [l, u]
, 
i-member: r ∈ I
, 
req: x = y
, 
real: ℝ
, 
nat: ℕ
, 
bool: 𝔹
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
uall: ∀[x:A]. B[x]
, 
cantor-interval: cantor-interval(a;b;f;n)
, 
i-member: r ∈ I
, 
rccint: [l, u]
, 
top: Top
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
guard: {T}
, 
uimplies: b supposing a
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
int_nzero: ℤ-o
, 
true: True
, 
nequal: a ≠ b ∈ T 
, 
sq_type: SQType(T)
, 
cand: A c∧ B
, 
int_upper: {i...}
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rneq: x ≠ y
, 
less_than: a < b
, 
nat_plus: ℕ+
, 
uiff: uiff(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rdiv: (x/y)
, 
rbetween: x≤y≤z
, 
rge: x ≥ y
Lemmas referenced : 
istype-false, 
istype-le, 
primrec0_lemma, 
istype-void, 
rleq_transitivity, 
cantor-to-interval_wf1, 
sq_stable__req, 
unique-limit, 
req_inversion, 
istype-nat, 
i-member_wf, 
rccint_wf, 
cantor-interval_wf, 
subtype_rel_function, 
nat_wf, 
bool_wf, 
int_seg_wf, 
int_seg_subtype_nat, 
subtype_rel_self, 
real_wf, 
common-limit-squeeze-ext, 
int-rdiv_wf, 
exp_wf3, 
subtype_base_sq, 
int_subtype_base, 
istype-int, 
nequal_wf, 
int-rmul_wf, 
exp_wf2, 
rsub_wf, 
cantor-interval-inclusion, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
intformand_wf, 
int_formula_prop_and_lemma, 
rleq_weakening_equal, 
constant-limit, 
req_weakening, 
rnexp-converges-ext, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
rless_wf, 
rabs_wf, 
rleq-int-fractions2, 
istype-less_than, 
rless-int-fractions3, 
rless_functionality, 
rabs-of-nonneg, 
rmul-limit, 
rnexp_wf, 
rmul_wf, 
itermSubtract_wf, 
itermMultiply_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
converges-to_functionality, 
not-equal-2, 
exp_wf_nat_plus, 
nat_plus_properties, 
intformless_wf, 
int_formula_prop_less_lemma, 
exp-positive-stronger, 
rneq_functionality, 
rnexp-int, 
req_functionality, 
rmul_functionality, 
rnexp-rdiv, 
rdiv_functionality, 
int-rdiv-req, 
int-rmul-req, 
rmul_preserves_req, 
rinv_wf2, 
req_transitivity, 
rmul-rinv3, 
rleq_weakening, 
rleq_functionality_wrt_implies, 
rsub_functionality_wrt_rleq, 
rleq_functionality, 
cantor-interval-length
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
introduction, 
extract_by_obid, 
isectElimination, 
because_Cache, 
hypothesisEquality, 
isect_memberEquality_alt, 
voidElimination, 
productElimination, 
independent_isectElimination, 
applyLambdaEquality, 
setElimination, 
rename, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
lambdaEquality_alt, 
inhabitedIsType, 
equalityIsType1, 
functionIsType, 
universeIsType, 
applyEquality, 
instantiate, 
cumulativity, 
intEquality, 
equalityIsType4, 
closedConclusion, 
addEquality, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
inrFormation_alt
Latex:
\mforall{}a,b,x:\mBbbR{}.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.
    ((\mforall{}n:\mBbbN{}.  (x  \mmember{}  [fst(cantor-interval(a;b;f;n)),  snd(cantor-interval(a;b;f;n))]))
    {}\mRightarrow{}  (cantor-to-interval(a;b;f)  =  x))
Date html generated:
2019_10_30-AM-07_40_07
Last ObjectModification:
2018_11_14-AM-10_07_05
Theory : reals
Home
Index