Nuprl Lemma : cantor-to-interval-req

a,b,x:ℝ. ∀f:ℕ ⟶ 𝔹.
  ((∀n:ℕ(x ∈ [fst(cantor-interval(a;b;f;n)), snd(cantor-interval(a;b;f;n))]))  (cantor-to-interval(a;b;f) x))


Proof




Definitions occuring in Statement :  cantor-to-interval: cantor-to-interval(a;b;f) cantor-interval: cantor-interval(a;b;f;n) rccint: [l, u] i-member: r ∈ I req: y real: nat: bool: 𝔹 pi1: fst(t) pi2: snd(t) all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A uall: [x:A]. B[x] cantor-interval: cantor-interval(a;b;f;n) i-member: r ∈ I rccint: [l, u] top: Top pi1: fst(t) pi2: snd(t) guard: {T} uimplies: supposing a squash: T sq_stable: SqStable(P) so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B prop: int_nzero: -o true: True nequal: a ≠ b ∈  sq_type: SQType(T) cand: c∧ B int_upper: {i...} ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] iff: ⇐⇒ Q rev_implies:  Q rneq: x ≠ y less_than: a < b nat_plus: + uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 rev_uimplies: rev_uimplies(P;Q) rdiv: (x/y) rbetween: x≤y≤z rge: x ≥ y
Lemmas referenced :  istype-false istype-le primrec0_lemma istype-void rleq_transitivity cantor-to-interval_wf1 sq_stable__req unique-limit req_inversion istype-nat i-member_wf rccint_wf cantor-interval_wf subtype_rel_function nat_wf bool_wf int_seg_wf int_seg_subtype_nat subtype_rel_self real_wf common-limit-squeeze-ext int-rdiv_wf exp_wf3 subtype_base_sq int_subtype_base istype-int nequal_wf int-rmul_wf exp_wf2 rsub_wf cantor-interval-inclusion nat_properties decidable__le full-omega-unsat intformnot_wf intformle_wf itermVar_wf itermAdd_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf intformand_wf int_formula_prop_and_lemma rleq_weakening_equal constant-limit req_weakening rnexp-converges-ext rdiv_wf int-to-real_wf rless-int rless_wf rabs_wf rleq-int-fractions2 istype-less_than rless-int-fractions3 rless_functionality rabs-of-nonneg rmul-limit rnexp_wf rmul_wf itermSubtract_wf itermMultiply_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma converges-to_functionality not-equal-2 exp_wf_nat_plus nat_plus_properties intformless_wf int_formula_prop_less_lemma exp-positive-stronger rneq_functionality rnexp-int req_functionality rmul_functionality rnexp-rdiv rdiv_functionality int-rdiv-req int-rmul-req rmul_preserves_req rinv_wf2 req_transitivity rmul-rinv3 rleq_weakening rleq_functionality_wrt_implies rsub_functionality_wrt_rleq rleq_functionality cantor-interval-length
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut hypothesis sqequalHypSubstitution dependent_functionElimination thin dependent_set_memberEquality_alt natural_numberEquality sqequalRule independent_pairFormation introduction extract_by_obid isectElimination because_Cache hypothesisEquality isect_memberEquality_alt voidElimination productElimination independent_isectElimination applyLambdaEquality setElimination rename imageMemberEquality baseClosed imageElimination equalityTransitivity equalitySymmetry independent_functionElimination lambdaEquality_alt inhabitedIsType equalityIsType1 functionIsType universeIsType applyEquality instantiate cumulativity intEquality equalityIsType4 closedConclusion addEquality unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality inrFormation_alt

Latex:
\mforall{}a,b,x:\mBbbR{}.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.
    ((\mforall{}n:\mBbbN{}.  (x  \mmember{}  [fst(cantor-interval(a;b;f;n)),  snd(cantor-interval(a;b;f;n))]))
    {}\mRightarrow{}  (cantor-to-interval(a;b;f)  =  x))



Date html generated: 2019_10_30-AM-07_40_07
Last ObjectModification: 2018_11_14-AM-10_07_05

Theory : reals


Home Index