Nuprl Lemma : derivative_unique
∀[I:Interval]
  (iproper(I) 
⇒ (∀[f,g1,g2:I ⟶ℝ].  (d(f[x])/dx = λx.g1[x] on I 
⇒ d(f[x])/dx = λx.g2[x] on I 
⇒ rfun-eq(I;g1;g2))))
Proof
Definitions occuring in Statement : 
derivative: d(f[x])/dx = λz.g[z] on I
, 
rfun-eq: rfun-eq(I;f;g)
, 
rfun: I ⟶ℝ
, 
iproper: iproper(I)
, 
interval: Interval
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
rfun-eq: rfun-eq(I;f;g)
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
label: ...$L... t
, 
rfun: I ⟶ℝ
, 
nat_plus: ℕ+
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
derivative: d(f[x])/dx = λz.g[z] on I
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
true: True
, 
sq_exists: ∃x:{A| B[x]}
, 
rless: x < y
, 
cand: A c∧ B
, 
subinterval: I ⊆ J 
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
uiff: uiff(P;Q)
, 
r-ap: f(x)
, 
rdiv: (x/y)
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
req-iff-rabs-rleq, 
r-ap_wf, 
sq_stable__i-member, 
nat_plus_wf, 
set_wf, 
real_wf, 
i-member_wf, 
derivative_wf, 
req_witness, 
rfun_wf, 
iproper_wf, 
interval_wf, 
sq_stable__rleq, 
rabs_wf, 
rsub_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf, 
i-member-proper-iff, 
i-approx-compact, 
mul_nat_plus, 
less_than_wf, 
icompact_wf, 
i-approx_wf, 
compact-proper-interval-near-member, 
rleq_wf, 
rmin_strict_ub, 
rmin_wf, 
i-approx-is-subinterval, 
rmin_ub, 
rleq_functionality_wrt_implies, 
rmul_wf, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
rleq_weakening_equal, 
rleq_weakening, 
real_term_polynomial, 
itermSubtract_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
rleq_functionality, 
rabs-difference-symmetry, 
req_weakening, 
radd_wf, 
equal_wf, 
rminus_wf, 
radd_functionality_wrt_rleq, 
r-triangle-inequality, 
req_functionality, 
req_inversion, 
rabs-rmul, 
rabs_functionality, 
itermAdd_wf, 
itermMinus_wf, 
real_term_value_add_lemma, 
real_term_value_minus_lemma, 
rmul-distrib1, 
req_wf, 
rneq_functionality, 
rmul-int, 
rneq-int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
equal-wf-T-base, 
rinv_wf2, 
uiff_transitivity, 
rmul_functionality, 
rdiv_functionality, 
rinv-of-rmul, 
req_transitivity, 
rmul-rinv3, 
rinv-mul-as-rdiv, 
rmul_preserves_rleq, 
squash_wf, 
true_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
because_Cache, 
hypothesisEquality, 
setElimination, 
rename, 
hypothesis, 
independent_isectElimination, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productElimination, 
lambdaEquality, 
applyEquality, 
dependent_set_memberEquality, 
setEquality, 
isect_memberEquality, 
natural_numberEquality, 
inrFormation, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
addLevel, 
levelHypothesis, 
productEquality, 
multiplyEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
impliesFunctionality, 
universeEquality
Latex:
\mforall{}[I:Interval]
    (iproper(I)
    {}\mRightarrow{}  (\mforall{}[f,g1,g2:I  {}\mrightarrow{}\mBbbR{}].
                (d(f[x])/dx  =  \mlambda{}x.g1[x]  on  I  {}\mRightarrow{}  d(f[x])/dx  =  \mlambda{}x.g2[x]  on  I  {}\mRightarrow{}  rfun-eq(I;g1;g2))))
Date html generated:
2017_10_03-PM-00_07_34
Last ObjectModification:
2017_07_28-AM-08_33_22
Theory : reals
Home
Index