Nuprl Lemma : quadratic-formula2

a,b,c:ℝ.
  (a ≠ r0
   (r0 ≤ ((b b) r(4) c))
   (∀x:ℝ
        ((((a x^2) (b x) c) r0)
         ((¬¬((x quadratic1(a;b;c)) ∨ (x quadratic2(a;b;c))))
           ∧ ((((r(2) a) x) b ≠ r0 ∨ (r0 < ((b b) r(4) c)))
              ((x quadratic1(a;b;c)) ∨ (x quadratic2(a;b;c))))))))


Proof




Definitions occuring in Statement :  quadratic2: quadratic2(a;b;c) quadratic1: quadratic1(a;b;c) rneq: x ≠ y rleq: x ≤ y rless: x < y rnexp: x^k1 rsub: y req: y rmul: b radd: b int-to-real: r(n) real: all: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rneq: x ≠ y or: P ∨ Q member: t ∈ T uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True uimplies: supposing a itermConstant: "const" req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top uiff: uiff(P;Q) prop: guard: {T} quadratic2: quadratic2(a;b;c) quadratic1: quadratic1(a;b;c) so_lambda: λ2x.t[x] so_apply: x[s] nat: le: A ≤ B sq_stable: SqStable(P) rev_uimplies: rev_uimplies(P;Q) subtype_rel: A ⊆B cand: c∧ B rsub: y stable: Stable{P} exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) nat_plus: + sq_exists: x:{A| B[x]} rless: x < y
Lemmas referenced :  rmul_preserves_rless int-to-real_wf rless-int rless_functionality rmul_wf real_term_polynomial itermSubtract_wf itermMultiply_wf itermVar_wf itermConstant_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma req-iff-rsub-is-0 rless_wf rsqrt_wf rsub_wf rleq_wf set_wf real_wf req_wf radd_wf rnexp_wf false_wf le_wf equal_wf rneq_wf squash_wf sq_stable__and sq_stable__rleq sq_stable__req req_witness req_functionality radd_functionality req_weakening rmul_functionality rnexp2 req_transitivity itermAdd_wf real_term_value_add_lemma radd-preserves-req rminus_wf itermMinus_wf real_term_value_minus_lemma rminus_functionality rsqrt-unique2 iff_weakening_equal or_wf true_wf not_wf req_inversion rdiv_wf radd_comm radd-zero-both rmul-zero-both radd-int rmul-distrib2 rmul-identity1 radd-assoc rminus-as-rmul rmul_comm rmul-rdiv-cancel2 uiff_transitivity rmul_preserves_req stable_req rless_irreflexivity rleq_weakening rless_transitivity1 radd-rminus-assoc radd-ac rmul-rdiv-cancel radd-preserves-rless rmul-is-positive rless_transitivity2 rless-cases rleq_weakening_rless int_formula_prop_wf int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_less_lemma intformless_wf satisfiable-full-omega-tt nat_plus_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution unionElimination thin inlFormation introduction extract_by_obid dependent_functionElimination hypothesisEquality isectElimination natural_numberEquality hypothesis independent_functionElimination productElimination sqequalRule independent_pairFormation imageMemberEquality baseClosed independent_isectElimination computeAll lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality because_Cache inrFormation dependent_set_memberEquality productEquality setElimination rename equalityTransitivity equalitySymmetry imageElimination minusEquality setEquality universeEquality applyEquality orFunctionality addLevel functionEquality addEquality promote_hyp impliesFunctionality dependent_pairFormation

Latex:
\mforall{}a,b,c:\mBbbR{}.
    (a  \mneq{}  r0
    {}\mRightarrow{}  (r0  \mleq{}  ((b  *  b)  -  r(4)  *  a  *  c))
    {}\mRightarrow{}  (\mforall{}x:\mBbbR{}
                ((((a  *  x\^{}2)  +  (b  *  x)  +  c)  =  r0)
                {}\mRightarrow{}  ((\mneg{}\mneg{}((x  =  quadratic1(a;b;c))  \mvee{}  (x  =  quadratic2(a;b;c))))
                      \mwedge{}  ((((r(2)  *  a)  *  x)  +  b  \mneq{}  r0  \mvee{}  (r0  <  ((b  *  b)  -  r(4)  *  a  *  c)))
                          {}\mRightarrow{}  ((x  =  quadratic1(a;b;c))  \mvee{}  (x  =  quadratic2(a;b;c))))))))



Date html generated: 2017_10_03-AM-10_45_55
Last ObjectModification: 2017_07_28-AM-08_19_26

Theory : reals


Home Index