Nuprl Lemma : quadratic-formula2
∀a,b,c:ℝ.
  (a ≠ r0
  
⇒ (r0 ≤ ((b * b) - r(4) * a * c))
  
⇒ (∀x:ℝ
        ((((a * x^2) + (b * x) + c) = r0)
        
⇒ ((¬¬((x = quadratic1(a;b;c)) ∨ (x = quadratic2(a;b;c))))
           ∧ ((((r(2) * a) * x) + b ≠ r0 ∨ (r0 < ((b * b) - r(4) * a * c)))
             
⇒ ((x = quadratic1(a;b;c)) ∨ (x = quadratic2(a;b;c))))))))
Proof
Definitions occuring in Statement : 
quadratic2: quadratic2(a;b;c)
, 
quadratic1: quadratic1(a;b;c)
, 
rneq: x ≠ y
, 
rleq: x ≤ y
, 
rless: x < y
, 
rnexp: x^k1
, 
rsub: x - y
, 
req: x = y
, 
rmul: a * b
, 
radd: a + b
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
uimplies: b supposing a
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
, 
top: Top
, 
uiff: uiff(P;Q)
, 
prop: ℙ
, 
guard: {T}
, 
quadratic2: quadratic2(a;b;c)
, 
quadratic1: quadratic1(a;b;c)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nat: ℕ
, 
le: A ≤ B
, 
sq_stable: SqStable(P)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
subtype_rel: A ⊆r B
, 
cand: A c∧ B
, 
rsub: x - y
, 
stable: Stable{P}
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
nat_plus: ℕ+
, 
sq_exists: ∃x:{A| B[x]}
, 
rless: x < y
Lemmas referenced : 
rmul_preserves_rless, 
int-to-real_wf, 
rless-int, 
rless_functionality, 
rmul_wf, 
real_term_polynomial, 
itermSubtract_wf, 
itermMultiply_wf, 
itermVar_wf, 
itermConstant_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
rless_wf, 
rsqrt_wf, 
rsub_wf, 
rleq_wf, 
set_wf, 
real_wf, 
req_wf, 
radd_wf, 
rnexp_wf, 
false_wf, 
le_wf, 
equal_wf, 
rneq_wf, 
squash_wf, 
sq_stable__and, 
sq_stable__rleq, 
sq_stable__req, 
req_witness, 
req_functionality, 
radd_functionality, 
req_weakening, 
rmul_functionality, 
rnexp2, 
req_transitivity, 
itermAdd_wf, 
real_term_value_add_lemma, 
radd-preserves-req, 
rminus_wf, 
itermMinus_wf, 
real_term_value_minus_lemma, 
rminus_functionality, 
rsqrt-unique2, 
iff_weakening_equal, 
or_wf, 
true_wf, 
not_wf, 
req_inversion, 
rdiv_wf, 
radd_comm, 
radd-zero-both, 
rmul-zero-both, 
radd-int, 
rmul-distrib2, 
rmul-identity1, 
radd-assoc, 
rminus-as-rmul, 
rmul_comm, 
rmul-rdiv-cancel2, 
uiff_transitivity, 
rmul_preserves_req, 
stable_req, 
rless_irreflexivity, 
rleq_weakening, 
rless_transitivity1, 
radd-rminus-assoc, 
radd-ac, 
rmul-rdiv-cancel, 
radd-preserves-rless, 
rmul-is-positive, 
rless_transitivity2, 
rless-cases, 
rleq_weakening_rless, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_less_lemma, 
intformless_wf, 
satisfiable-full-omega-tt, 
nat_plus_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
inlFormation, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
independent_functionElimination, 
productElimination, 
sqequalRule, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
computeAll, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
inrFormation, 
dependent_set_memberEquality, 
productEquality, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
imageElimination, 
minusEquality, 
setEquality, 
universeEquality, 
applyEquality, 
orFunctionality, 
addLevel, 
functionEquality, 
addEquality, 
promote_hyp, 
impliesFunctionality, 
dependent_pairFormation
Latex:
\mforall{}a,b,c:\mBbbR{}.
    (a  \mneq{}  r0
    {}\mRightarrow{}  (r0  \mleq{}  ((b  *  b)  -  r(4)  *  a  *  c))
    {}\mRightarrow{}  (\mforall{}x:\mBbbR{}
                ((((a  *  x\^{}2)  +  (b  *  x)  +  c)  =  r0)
                {}\mRightarrow{}  ((\mneg{}\mneg{}((x  =  quadratic1(a;b;c))  \mvee{}  (x  =  quadratic2(a;b;c))))
                      \mwedge{}  ((((r(2)  *  a)  *  x)  +  b  \mneq{}  r0  \mvee{}  (r0  <  ((b  *  b)  -  r(4)  *  a  *  c)))
                          {}\mRightarrow{}  ((x  =  quadratic1(a;b;c))  \mvee{}  (x  =  quadratic2(a;b;c))))))))
Date html generated:
2017_10_03-AM-10_45_55
Last ObjectModification:
2017_07_28-AM-08_19_26
Theory : reals
Home
Index