Nuprl Lemma : rv-tarski-parallel
∀n:ℕ. ∀a,b,c:ℝ^n.  (a ≠ b 
⇒ a ≠ c 
⇒ (∀d,p:ℝ^n.  (b-d-c 
⇒ a-d-p 
⇒ (∃x,y:ℝ^n. (a-b-x ∧ x-p-y ∧ a-c-y)))))
Proof
Definitions occuring in Statement : 
rv-between: a-b-c
, 
real-vec-sep: a ≠ b
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
rv-between: a-b-c
, 
and: P ∧ Q
, 
real-vec-between: a-b-c
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uimplies: b supposing a
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
, 
uiff: uiff(P;Q)
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
prop: ℙ
, 
cand: A c∧ B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
i-member: r ∈ I
, 
rooint: (l, u)
, 
real-vec-mul: a*X
, 
real-vec-sub: X - Y
, 
real-vec-add: X + Y
, 
req-vec: req-vec(n;x;y)
, 
nat: ℕ
, 
real-vec: ℝ^n
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rdiv: (x/y)
, 
subtype_rel: A ⊆r B
, 
real-vec-sep: a ≠ b
, 
rge: x ≥ y
, 
sq_exists: ∃x:{A| B[x]}
, 
rless: x < y
, 
rsub: x - y
Lemmas referenced : 
member_rooint_lemma, 
radd-preserves-rless, 
int-to-real_wf, 
rsub_wf, 
rless_functionality, 
radd_wf, 
real_term_polynomial, 
itermSubtract_wf, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
real-vec-mul_wf, 
real-vec-sub_wf, 
rdiv_wf, 
rless_wf, 
rv-between_wf, 
exists_wf, 
real-vec_wf, 
real-vec-sep_wf, 
nat_wf, 
real_wf, 
equal_wf, 
i-member_wf, 
rooint_wf, 
req-vec_wf, 
real-vec-add_wf, 
int_seg_wf, 
rmul_wf, 
rminus_wf, 
rinv_wf2, 
itermMultiply_wf, 
itermMinus_wf, 
real_term_value_mul_lemma, 
real_term_value_minus_lemma, 
req_functionality, 
req_weakening, 
radd_functionality, 
rmul-assoc, 
req_transitivity, 
rminus_functionality, 
rmul_functionality, 
rmul-rinv, 
real-vec-dist_wf, 
real-vec-dist-between, 
real-vec-dist-nonneg, 
radd_functionality_wrt_rleq, 
rleq_weakening_equal, 
rless_functionality_wrt_implies, 
trivial-rless-radd, 
rleq_wf, 
rminus-rminus, 
rmul-ac, 
real-vec-sub_functionality, 
req-vec_weakening, 
req-vec_functionality, 
radd-rminus-assoc, 
radd_comm, 
radd-ac, 
radd-assoc, 
req_inversion, 
rmul_comm, 
rmul-one-both, 
rmul_over_rminus, 
rmul-distrib, 
uiff_transitivity, 
rsub_functionality, 
req_wf, 
rmul_preserves_req, 
req-implies-req, 
rmul-rinv3, 
rabs_wf, 
real-vec-dist-dilation, 
real-vec-dist-translation, 
rmul_preserves_rless, 
rabs_functionality, 
rmul-identity1, 
rinv-as-rdiv, 
rdiv_functionality, 
radd-zero-both, 
rminus-zero, 
rmul-zero-both, 
rmul-rdiv-cancel2, 
rleq_functionality, 
rabs-of-nonneg, 
rleq_weakening_rless, 
rless_transitivity2, 
rmul_preserves_rleq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
rename, 
isectElimination, 
natural_numberEquality, 
hypothesisEquality, 
because_Cache, 
independent_functionElimination, 
independent_isectElimination, 
sqequalRule, 
computeAll, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_pairFormation, 
inrFormation, 
independent_pairFormation, 
productEquality, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
applyEquality, 
setEquality, 
levelHypothesis, 
addLevel
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c:\mBbbR{}\^{}n.
    (a  \mneq{}  b  {}\mRightarrow{}  a  \mneq{}  c  {}\mRightarrow{}  (\mforall{}d,p:\mBbbR{}\^{}n.    (b-d-c  {}\mRightarrow{}  a-d-p  {}\mRightarrow{}  (\mexists{}x,y:\mBbbR{}\^{}n.  (a-b-x  \mwedge{}  x-p-y  \mwedge{}  a-c-y)))))
Date html generated:
2017_10_03-AM-11_18_30
Last ObjectModification:
2017_07_28-AM-08_25_40
Theory : reals
Home
Index