Nuprl Lemma : rv-tarski-parallel

n:ℕ. ∀a,b,c:ℝ^n.  (a ≠  a ≠  (∀d,p:ℝ^n.  (b-d-c  a-d-p  (∃x,y:ℝ^n. (a-b-x ∧ x-p-y ∧ a-c-y)))))


Proof




Definitions occuring in Statement :  rv-between: a-b-c real-vec-sep: a ≠ b real-vec: ^n nat: all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rv-between: a-b-c and: P ∧ Q real-vec-between: a-b-c exists: x:A. B[x] member: t ∈ T top: Top uall: [x:A]. B[x] iff: ⇐⇒ Q rev_implies:  Q uimplies: supposing a itermConstant: "const" req_int_terms: t1 ≡ t2 false: False not: ¬A uiff: uiff(P;Q) rneq: x ≠ y guard: {T} or: P ∨ Q prop: cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s] i-member: r ∈ I rooint: (l, u) real-vec-mul: a*X real-vec-sub: Y real-vec-add: Y req-vec: req-vec(n;x;y) nat: real-vec: ^n rev_uimplies: rev_uimplies(P;Q) rdiv: (x/y) subtype_rel: A ⊆B real-vec-sep: a ≠ b rge: x ≥ y sq_exists: x:{A| B[x]} rless: x < y rsub: y
Lemmas referenced :  member_rooint_lemma radd-preserves-rless int-to-real_wf rsub_wf rless_functionality radd_wf real_term_polynomial itermSubtract_wf itermAdd_wf itermVar_wf itermConstant_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_add_lemma real_term_value_var_lemma req-iff-rsub-is-0 real-vec-mul_wf real-vec-sub_wf rdiv_wf rless_wf rv-between_wf exists_wf real-vec_wf real-vec-sep_wf nat_wf real_wf equal_wf i-member_wf rooint_wf req-vec_wf real-vec-add_wf int_seg_wf rmul_wf rminus_wf rinv_wf2 itermMultiply_wf itermMinus_wf real_term_value_mul_lemma real_term_value_minus_lemma req_functionality req_weakening radd_functionality rmul-assoc req_transitivity rminus_functionality rmul_functionality rmul-rinv real-vec-dist_wf real-vec-dist-between real-vec-dist-nonneg radd_functionality_wrt_rleq rleq_weakening_equal rless_functionality_wrt_implies trivial-rless-radd rleq_wf rminus-rminus rmul-ac real-vec-sub_functionality req-vec_weakening req-vec_functionality radd-rminus-assoc radd_comm radd-ac radd-assoc req_inversion rmul_comm rmul-one-both rmul_over_rminus rmul-distrib uiff_transitivity rsub_functionality req_wf rmul_preserves_req req-implies-req rmul-rinv3 rabs_wf real-vec-dist-dilation real-vec-dist-translation rmul_preserves_rless rabs_functionality rmul-identity1 rinv-as-rdiv rdiv_functionality radd-zero-both rminus-zero rmul-zero-both rmul-rdiv-cancel2 rleq_functionality rabs-of-nonneg rleq_weakening_rless rless_transitivity2 rmul_preserves_rleq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid dependent_functionElimination isect_memberEquality voidElimination voidEquality hypothesis rename isectElimination natural_numberEquality hypothesisEquality because_Cache independent_functionElimination independent_isectElimination sqequalRule computeAll lambdaEquality int_eqEquality intEquality dependent_pairFormation inrFormation independent_pairFormation productEquality equalityTransitivity equalitySymmetry setElimination applyEquality setEquality levelHypothesis addLevel

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c:\mBbbR{}\^{}n.
    (a  \mneq{}  b  {}\mRightarrow{}  a  \mneq{}  c  {}\mRightarrow{}  (\mforall{}d,p:\mBbbR{}\^{}n.    (b-d-c  {}\mRightarrow{}  a-d-p  {}\mRightarrow{}  (\mexists{}x,y:\mBbbR{}\^{}n.  (a-b-x  \mwedge{}  x-p-y  \mwedge{}  a-c-y)))))



Date html generated: 2017_10_03-AM-11_18_30
Last ObjectModification: 2017_07_28-AM-08_25_40

Theory : reals


Home Index