Nuprl Lemma : monotone-bar-induction2

B,Q:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ.
  ((∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  (∀m:ℕB[n 1;s.m@n])))
   (∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  ⇃(Q[n;s])))
   (∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. ⇃(Q[n 1;s.m@n]))  ⇃(Q[n;s])))
   (∀alpha:ℕ ⟶ ℕ. ∃m:ℕB[m;alpha])
   ⇃(Q[0;λx.⊥]))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] seq-add: s.x@n int_seg: {i..j-} nat: bottom: prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] implies:  Q true: True lambda: λx.A[x] function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T so_apply: x[s1;s2] subtype_rel: A ⊆B uall: [x:A]. B[x] nat: uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A prop: ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top so_lambda: λ2y.t[x; y] pi1: fst(t) squash: T true: True lelt: i ≤ j < k iff: ⇐⇒ Q rev_implies:  Q assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 int_seg: {i..j-} ext2Baire: ext2Baire(n;f;d) cand: c∧ B outl: outl(x) so_apply: x[s] so_lambda: λ2x.t[x] sq_stable: SqStable(P) less_than: a < b subtract: m nequal: a ≠ b ∈  seq-add: s.x@n seq-append: seq-append(n;m;s1;s2) seq-adjoin: s++t quotient: x,y:A//B[x; y] isl: isl(x)
Lemmas referenced :  strong-continuity2-no-inner-squash-bound istype-nat subtype_rel_function nat_wf int_seg_wf int_seg_subtype_nat istype-false subtype_rel_self quotient_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf istype-le seq-add_wf true_wf equiv_rel_true decidable__equal_int intformeq_wf int_formula_prop_eq_lemma isl_wf assert_wf equal_wf less_than_wf unit_wf2 seq-adjoin_wf le_wf decidable__assert basic_bar_induction ext2Baire_wf bool_wf squash_wf int_formula_prop_less_lemma intformless_wf int_seg_properties iff_weakening_uiff assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert assert_of_lt_int eqtt_to_assert lt_int_wf btrue_neq_bfalse int_subtype_base bfalse_wf btrue_wf iff_imp_equal_bool lelt_wf set_subtype_base decidable__lt le_weakening2 sq_stable__le int_seg_subtype primrec-wf2 int_term_value_subtract_lemma itermSubtract_wf subtract_wf add-zero le-add-cancel2 add_functionality_wrt_le add-associates add-commutes minus-one-mul-top add-swap minus-one-mul minus-add condition-implies-le not-le-2 add-member-int_seg2 subtract-add-cancel neg_assert_of_eq_int decidable__equal_nat assert_of_eq_int eq_int_wf zero-add zero-mul add-mul-special istype-top member_wf quotient-member-eq prop-truncation-quot istype-less_than union_subtype_base unit_subtype_base istype-assert subtype_rel_union istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut hypothesis promote_hyp thin sqequalHypSubstitution productElimination introduction extract_by_obid dependent_functionElimination hypothesisEquality sqequalRule Error :functionIsType,  because_Cache Error :productIsType,  Error :universeIsType,  applyEquality isectElimination natural_numberEquality setElimination rename independent_isectElimination independent_pairFormation instantiate universeEquality Error :dependent_set_memberEquality_alt,  addEquality unionElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination Error :inhabitedIsType,  equalityTransitivity equalitySymmetry functionExtensionality functionEquality Error :equalityIstype,  Error :inlEquality_alt,  unionEquality Error :unionIsType,  baseClosed imageMemberEquality imageElimination hyp_replacement cumulativity Error :equalityIsType1,  equalityElimination Error :functionExtensionality_alt,  applyLambdaEquality intEquality Error :inrEquality_alt,  closedConclusion baseApply Error :equalityIsType4,  Error :setIsType,  minusEquality int_eqReduceFalseSq int_eqReduceTrueSq axiomSqEquality Error :isect_memberFormation_alt,  lessCases pertypeElimination pointwiseFunctionality sqequalBase

Latex:
\mforall{}B,Q:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}.
    ((\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  (\mforall{}m:\mBbbN{}.  B[n  +  1;s.m@n])))
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  \00D9(Q[n;s])))
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}m:\mBbbN{}.  \00D9(Q[n  +  1;s.m@n]))  {}\mRightarrow{}  \00D9(Q[n;s])))
    {}\mRightarrow{}  (\mforall{}alpha:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mexists{}m:\mBbbN{}.  B[m;alpha])
    {}\mRightarrow{}  \00D9(Q[0;\mlambda{}x.\mbot{}]))



Date html generated: 2019_06_20-PM-02_54_32
Last ObjectModification: 2018_12_06-PM-11_36_05

Theory : continuity


Home Index