Nuprl Lemma : hd-rev-pcs-mon-vars
∀X:polynomial-constraints(). (0 < ||rev(pcs-mon-vars(X))|| ∧ (hd(rev(pcs-mon-vars(X))) = [] ∈ (ℤ List)))
Proof
Definitions occuring in Statement : 
pcs-mon-vars: pcs-mon-vars(X)
, 
polynomial-constraints: polynomial-constraints()
, 
hd: hd(l)
, 
length: ||as||
, 
reverse: rev(as)
, 
nil: []
, 
list: T List
, 
less_than: a < b
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
iPolynomial: iPolynomial()
, 
int_seg: {i..j-}
, 
sq_stable: SqStable(P)
, 
lelt: i ≤ j < k
, 
squash: ↓T
, 
guard: {T}
, 
so_apply: x[s]
, 
iMonomial: iMonomial()
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
or: P ∨ Q
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
false: False
, 
cons: [a / b]
, 
bfalse: ff
, 
not: ¬A
, 
cand: A c∧ B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
pi2: snd(t)
, 
sq_type: SQType(T)
, 
nat: ℕ
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
true: True
, 
ge: i ≥ j 
, 
polynomial-mon-vars: polynomial-mon-vars(init;p)
, 
colength: colength(L)
, 
nil: []
, 
it: ⋅
, 
polynomial-constraints: polynomial-constraints()
, 
pcs-mon-vars: pcs-mon-vars(X)
, 
last: last(L)
, 
select: L[n]
, 
length: ||as||
, 
list_ind: list_ind
Lemmas referenced : 
polynomial-constraints_wf, 
list_induction, 
iPolynomial_wf, 
all_wf, 
list_wf, 
less_than_wf, 
length_wf, 
equal-wf-base, 
list_accum_wf, 
top_wf, 
subtype_rel_list, 
subtype_rel_set, 
iMonomial_wf, 
int_seg_wf, 
imonomial-less_wf, 
select_wf, 
sq_stable__le, 
less_than_transitivity2, 
le_weakening2, 
subtype_rel_product, 
int_nzero_wf, 
sorted_wf, 
subtype_rel_self, 
polynomial-mon-vars_wf, 
equal-wf-T-base, 
last_wf, 
list-cases, 
null_nil_lemma, 
length_of_nil_lemma, 
product_subtype_list, 
null_cons_lemma, 
length_of_cons_lemma, 
false_wf, 
equal_wf, 
list_accum_nil_lemma, 
list_accum_cons_lemma, 
list_subtype_base, 
int_subtype_base, 
member-polynomial-mon-vars, 
l_exists_wf, 
equal-wf-base-T, 
l_member_wf, 
subtype_base_sq, 
last_member, 
nil_member, 
length_wf_nat, 
nat_wf, 
decidable__lt, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
nil_wf, 
squash_wf, 
true_wf, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
colength_wf_list, 
spread_cons_lemma, 
le_antisymmetry_iff, 
decidable__le, 
not-le-2, 
le_wf, 
subtract_wf, 
not-ge-2, 
less-iff-le, 
minus-minus, 
add-swap, 
set_subtype_base, 
insert_wf, 
list-deq_wf, 
int-deq_wf, 
iff_weakening_equal, 
non_nil_length, 
insert-not-nil, 
last-insert, 
ite_rw_false, 
cons_wf, 
length-reverse, 
hd-reverse-is-last, 
pcs-mon-vars_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
thin, 
sqequalHypSubstitution, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
intEquality, 
functionEquality, 
natural_numberEquality, 
because_Cache, 
hypothesisEquality, 
productEquality, 
applyEquality, 
independent_isectElimination, 
setElimination, 
rename, 
independent_functionElimination, 
productElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_functionElimination, 
setEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairFormation, 
baseApply, 
closedConclusion, 
inlFormation, 
instantiate, 
cumulativity, 
addEquality, 
minusEquality, 
addLevel, 
hyp_replacement, 
universeEquality, 
equalityUniverse, 
levelHypothesis, 
intWeakElimination, 
axiomEquality, 
applyLambdaEquality, 
dependent_set_memberEquality
Latex:
\mforall{}X:polynomial-constraints().  (0  <  ||rev(pcs-mon-vars(X))||  \mwedge{}  (hd(rev(pcs-mon-vars(X)))  =  []))
Date html generated:
2017_04_14-AM-09_03_44
Last ObjectModification:
2017_02_27-PM-03_44_20
Theory : omega
Home
Index