Nuprl Lemma : hd-rev-pcs-mon-vars

X:polynomial-constraints(). (0 < ||rev(pcs-mon-vars(X))|| ∧ (hd(rev(pcs-mon-vars(X))) [] ∈ (ℤ List)))


Proof




Definitions occuring in Statement :  pcs-mon-vars: pcs-mon-vars(X) polynomial-constraints: polynomial-constraints() hd: hd(l) length: ||as|| reverse: rev(as) nil: [] list: List less_than: a < b all: x:A. B[x] and: P ∧ Q natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] implies:  Q prop: and: P ∧ Q subtype_rel: A ⊆B uimplies: supposing a iPolynomial: iPolynomial() int_seg: {i..j-} sq_stable: SqStable(P) lelt: i ≤ j < k squash: T guard: {T} so_apply: x[s] iMonomial: iMonomial() top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] or: P ∨ Q assert: b ifthenelse: if then else fi  btrue: tt less_than: a < b less_than': less_than'(a;b) false: False cons: [a b] bfalse: ff not: ¬A cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q pi2: snd(t) sq_type: SQType(T) nat: le: A ≤ B decidable: Dec(P) uiff: uiff(P;Q) subtract: m true: True ge: i ≥  polynomial-mon-vars: polynomial-mon-vars(init;p) colength: colength(L) nil: [] it: polynomial-constraints: polynomial-constraints() pcs-mon-vars: pcs-mon-vars(X) last: last(L) select: L[n] length: ||as|| list_ind: list_ind
Lemmas referenced :  polynomial-constraints_wf list_induction iPolynomial_wf all_wf list_wf less_than_wf length_wf equal-wf-base list_accum_wf top_wf subtype_rel_list subtype_rel_set iMonomial_wf int_seg_wf imonomial-less_wf select_wf sq_stable__le less_than_transitivity2 le_weakening2 subtype_rel_product int_nzero_wf sorted_wf subtype_rel_self polynomial-mon-vars_wf equal-wf-T-base last_wf list-cases null_nil_lemma length_of_nil_lemma product_subtype_list null_cons_lemma length_of_cons_lemma false_wf equal_wf list_accum_nil_lemma list_accum_cons_lemma list_subtype_base int_subtype_base member-polynomial-mon-vars l_exists_wf equal-wf-base-T l_member_wf subtype_base_sq last_member nil_member length_wf_nat nat_wf decidable__lt not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel nil_wf squash_wf true_wf nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf colength_wf_list spread_cons_lemma le_antisymmetry_iff decidable__le not-le-2 le_wf subtract_wf not-ge-2 less-iff-le minus-minus add-swap set_subtype_base insert_wf list-deq_wf int-deq_wf iff_weakening_equal non_nil_length insert-not-nil last-insert ite_rw_false cons_wf length-reverse hd-reverse-is-last pcs-mon-vars_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid hypothesis thin sqequalHypSubstitution isectElimination sqequalRule lambdaEquality intEquality functionEquality natural_numberEquality because_Cache hypothesisEquality productEquality applyEquality independent_isectElimination setElimination rename independent_functionElimination productElimination imageMemberEquality baseClosed imageElimination dependent_functionElimination setEquality isect_memberEquality voidElimination voidEquality unionElimination promote_hyp hypothesis_subsumption equalityTransitivity equalitySymmetry independent_pairFormation baseApply closedConclusion inlFormation instantiate cumulativity addEquality minusEquality addLevel hyp_replacement universeEquality equalityUniverse levelHypothesis intWeakElimination axiomEquality applyLambdaEquality dependent_set_memberEquality

Latex:
\mforall{}X:polynomial-constraints().  (0  <  ||rev(pcs-mon-vars(X))||  \mwedge{}  (hd(rev(pcs-mon-vars(X)))  =  []))



Date html generated: 2017_04_14-AM-09_03_44
Last ObjectModification: 2017_02_27-PM-03_44_20

Theory : omega


Home Index