Nuprl Lemma : global-eo-first
∀[L:(Id × Top) List]. ∀[e:E].  (first(e) ~ (∀x∈upto(e).¬bloc(x) = loc(e))_b)
Proof
Definitions occuring in Statement : 
global-eo: global-eo(L)
, 
es-first: first(e)
, 
es-loc: loc(e)
, 
es-E: E
, 
eq_id: a = b
, 
Id: Id
, 
bl-all: (∀x∈L.P[x])_b
, 
upto: upto(n)
, 
list: T List
, 
bnot: ¬bb
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
product: x:A × B[x]
, 
sqequal: s ~ t
Lemmas : 
es-E_wf, 
global-eo_wf, 
top_wf, 
event-ordering+_subtype, 
list_wf, 
Id_wf, 
global-eo-E-sq, 
global-eo-loc, 
global-eo-E, 
subtype_rel_list, 
es-pred-wf-base, 
subtype_rel_self, 
lelt_wf, 
length_wf, 
global-eo-base-E, 
true_wf, 
global-eo-eq-E, 
global-eo-dom, 
rec_select_update_lemma, 
select_wf, 
int_seg_wf, 
sq_stable__le, 
value-type-has-value, 
atom2-value-type, 
firstn_wf, 
set-value-type, 
int-value-type, 
last_index_wf, 
eq_id_wf, 
last_index_property, 
length_firstn, 
subtype_rel_sets, 
le_wf, 
le_weakening2, 
less_than_wf, 
assert_wf, 
subtract_wf, 
decidable__le, 
false_wf, 
not-le-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
not_wf, 
l_exists_wf, 
nth_tl_wf, 
l_member_wf, 
equal-wf-T-base, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
bl-all_wf, 
upto_wf, 
bnot_wf, 
less_than_transitivity2, 
assert-bl-all, 
length_upto, 
int_seg_subtype-nat, 
zero-le-nat, 
nat_wf, 
non_neg_length, 
length_firstn_eq, 
length_wf_nat, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
assert-eq-id, 
assert_functionality_wrt_uiff, 
squash_wf, 
pi1_wf_top, 
select_upto, 
select_firstn, 
iff_weakening_equal, 
decidable__lt, 
not-equal-2, 
minus-zero, 
le_antisymmetry_iff, 
subtype_rel_nested_set, 
set_wf, 
l_all_wf2, 
subtype_rel_nested_set2, 
select-firstn, 
assert_elim, 
bfalse_wf, 
and_wf, 
btrue_neq_bfalse, 
bool_sq
Latex:
\mforall{}[L:(Id  \mtimes{}  Top)  List].  \mforall{}[e:E].    (first(e)  \msim{}  (\mforall{}x\mmember{}upto(e).\mneg{}\msubb{}loc(x)  =  loc(e))\_b)
Date html generated:
2015_07_21-PM-04_35_43
Last ObjectModification:
2015_02_04-PM-06_00_16
Home
Index