Nuprl Lemma : global-eo-first

[L:(Id × Top) List]. ∀[e:E].  (first(e) (∀x∈upto(e).¬bloc(x) loc(e))_b)


Proof




Definitions occuring in Statement :  global-eo: global-eo(L) es-first: first(e) es-loc: loc(e) es-E: E eq_id: b Id: Id bl-all: (∀x∈L.P[x])_b upto: upto(n) list: List bnot: ¬bb uall: [x:A]. B[x] top: Top product: x:A × B[x] sqequal: t
Lemmas :  es-E_wf global-eo_wf top_wf event-ordering+_subtype list_wf Id_wf global-eo-E-sq global-eo-loc global-eo-E subtype_rel_list es-pred-wf-base subtype_rel_self lelt_wf length_wf global-eo-base-E true_wf global-eo-eq-E global-eo-dom rec_select_update_lemma select_wf int_seg_wf sq_stable__le value-type-has-value atom2-value-type firstn_wf set-value-type int-value-type last_index_wf eq_id_wf last_index_property length_firstn subtype_rel_sets le_wf le_weakening2 less_than_wf assert_wf subtract_wf decidable__le false_wf not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel not_wf l_exists_wf nth_tl_wf l_member_wf equal-wf-T-base eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int bl-all_wf upto_wf bnot_wf less_than_transitivity2 assert-bl-all length_upto int_seg_subtype-nat zero-le-nat nat_wf non_neg_length length_firstn_eq length_wf_nat iff_transitivity iff_weakening_uiff assert_of_bnot assert-eq-id assert_functionality_wrt_uiff squash_wf pi1_wf_top select_upto select_firstn iff_weakening_equal decidable__lt not-equal-2 minus-zero le_antisymmetry_iff subtype_rel_nested_set set_wf l_all_wf2 subtype_rel_nested_set2 select-firstn assert_elim bfalse_wf and_wf btrue_neq_bfalse bool_sq

Latex:
\mforall{}[L:(Id  \mtimes{}  Top)  List].  \mforall{}[e:E].    (first(e)  \msim{}  (\mforall{}x\mmember{}upto(e).\mneg{}\msubb{}loc(x)  =  loc(e))\_b)



Date html generated: 2015_07_21-PM-04_35_43
Last ObjectModification: 2015_02_04-PM-06_00_16

Home Index