Nuprl Lemma : three-cs-safety1

[V:Type]. ∀[eq:EqDecider(V)]. ∀[A:Id List]. ∀[t:ℕ+].
  (∀[f:(V List) ─→ V]
     ∀[v,w:V]. ∀[s,s':ts-reachable(three-consensus-ts(V;A;t;f))].
       (v w ∈ V) supposing 
          (three-cs-decided(V;A;t;f;s';w) and 
          three-cs-decided(V;A;t;f;s;v) and 
          (s (ts-rel(three-consensus-ts(V;A;t;f))^*) s')) 
     supposing ∀vs:V List. ∀v:V.
                 ((||vs|| ((2 t) 1) ∈ ℤ)
                  ((t 1) ≤ ||filter(λx.(eqof(eq) v);vs)||)
                  ((f vs) v ∈ V))) supposing 
     ((||A|| ((3 t) 1) ∈ ℤand 
     no_repeats(Id;A))


Proof




Definitions occuring in Statement :  three-cs-decided: three-cs-decided(V;A;t;f;s;v) three-consensus-ts: three-consensus-ts(V;A;t;f) Id: Id eqof: eqof(d) deq: EqDecider(T) no_repeats: no_repeats(T;l) filter: filter(P;l) length: ||as|| list: List rel_star: R^* nat_plus: + uimplies: supposing a uall: [x:A]. B[x] infix_ap: y le: A ≤ B all: x:A. B[x] implies:  Q apply: a lambda: λx.A[x] function: x:A ─→ B[x] multiply: m add: m natural_number: $n int: universe: Type equal: t ∈ T ts-reachable: ts-reachable(ts) ts-rel: ts-rel(ts) ts-type: ts-type(ts)
Lemmas :  three-intersecting-wait-set-exists nat_plus_subtype_nat three-cs-decided_wf infix_ap_wf Id_wf l_member_wf list_wf consensus-rcv_wf rel_star_wf ts-type_wf ts-rel_wf subtype_rel_dep_function subtype_rel_self ts-reachable_wf three-consensus-ts_wf subtype_rel_wf all_wf length_wf le_wf filter_wf5 eqof_wf subtype_rel_set ts-init_wf equal_wf no_repeats_wf nat_plus_wf deq_wf iseg_transitivity select_wf sq_stable__le iseg_wf archive-condition_wf int_seg_wf l_all_wf2 set_wf exists_wf ts-transitive-stable iseg_weakening iseg_transitivity2 nat_wf cs-rcv-vote_wf not_wf append_wf cons_wf nil_wf decidable__equal_Id length_wf_nat atom2_subtype_base subtype_base_sq iseg_append iff_weakening_equal three-intersection-two-intersection nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel length_of_cons_lemma product_subtype_list length_of_nil_lemma list-cases le_weakening2 zero-le-nat cons_member l_all_iff three-cs-archive-condition decidable__lt int_subtype_base le_weakening common_iseg_compat proper-iseg_wf or_wf compat-iseg-cases archive-condition-innings archive-condition-one-one safe-assert-deq lelt_wf assert_wf length-filter-lower-bound btrue_neq_bfalse not_assert_elim assert_elim decidable__equal_int_seg int_seg_subtype-nat true_wf squash_wf equipollent_wf equipollent-length one-mul mul-distributes-right mul-associates equipollent-subtract2 decidable__equal_set zero-mul add-mul-special proper-iseg-length iseg_same_length iseg_length
\mforall{}[V:Type].  \mforall{}[eq:EqDecider(V)].  \mforall{}[A:Id  List].  \mforall{}[t:\mBbbN{}\msupplus{}].
    (\mforall{}[f:(V  List)  {}\mrightarrow{}  V]
          \mforall{}[v,w:V].  \mforall{}[s,s':ts-reachable(three-consensus-ts(V;A;t;f))].
              (v  =  w)  supposing 
                    (three-cs-decided(V;A;t;f;s';w)  and 
                    three-cs-decided(V;A;t;f;s;v)  and 
                    (s  (ts-rel(three-consensus-ts(V;A;t;f))\^{}*)  s')) 
          supposing  \mforall{}vs:V  List.  \mforall{}v:V.
                                  ((||vs||  =  ((2  *  t)  +  1))
                                  {}\mRightarrow{}  ((t  +  1)  \mleq{}  ||filter(\mlambda{}x.(eqof(eq)  x  v);vs)||)
                                  {}\mRightarrow{}  ((f  vs)  =  v)))  supposing 
          ((||A||  =  ((3  *  t)  +  1))  and 
          no\_repeats(Id;A))



Date html generated: 2015_07_17-AM-11_54_01
Last ObjectModification: 2015_07_16-AM-09_45_41

Home Index