Nuprl Lemma : ddr_wf

x:ℝ. ∀n:ℕ+.  (ddr(x;n) ∈ {y:ℝ|x y| ≤ (r1/r(5 10^n 1))} )


Proof




Definitions occuring in Statement :  ddr: ddr(x;n) rdiv: (x/y) rleq: x ≤ y rabs: |x| rsub: y int-to-real: r(n) real: exp: i^n nat_plus: + all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  multiply: m subtract: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: nat_plus: + decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q prop: ddr: ddr(x;n) subtype_rel: A ⊆B less_than: a < b squash: T less_than': less_than'(a;b) true: True guard: {T} le: A ≤ B int_upper: {i...} has-value: (a)↓ int_nzero: -o nequal: a ≠ b ∈  sq_type: SQType(T) uiff: uiff(P;Q) real: iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] ge: i ≥  subtract: m rneq: x ≠ y rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y rational-approx: (x within 1/n) divides: a
Lemmas referenced :  rational-approx-property mul_nat_plus exp_wf_nat_plus subtract_wf nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf nat_plus_wf real_wf exp-fastexp nat_plus_subtype_nat exp_wf2 less_than_wf mul_preserves_le false_wf exp_step itermMultiply_wf int_term_value_mul_lemma int_upper_wf int_upper_properties value-type-has-value int-value-type div_rem_sum subtype_base_sq int_subtype_base equal-wf-base true_wf nequal_wf rem_bounds_1 int_upper_subtype_nat add-is-int-iff multiply-is-int-iff intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__lt not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel rat-to-real_wf subtype_rel_sets equal_wf rleq_wf rabs_wf rsub_wf rdiv_wf int-to-real_wf rneq-int int_entire_a set_subtype_base exp_wf4 nat_wf div-cancel2 nat_properties decidable__equal_int rational-approx_wf le_antisymmetry_iff condition-implies-le minus-one-mul minus-one-mul-top mul-associates add-associates add-swap rless-int rless_wf rleq_functionality_wrt_implies rleq_weakening_equal div_rem_sum2 divides_iff_rem_zero equal-wf-T-base rat-to-real-req int-rdiv_wf rleq_functionality req_weakening rabs_functionality rsub_functionality int-rdiv-req
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination because_Cache dependent_set_memberEquality setElimination rename hypothesis natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll applyEquality imageMemberEquality baseClosed equalityTransitivity equalitySymmetry applyLambdaEquality productElimination callbyvalueReduce addLevel instantiate cumulativity independent_functionElimination divideEquality imageElimination pointwiseFunctionality promote_hyp baseApply closedConclusion setEquality multiplyEquality addEquality minusEquality inrFormation

Latex:
\mforall{}x:\mBbbR{}.  \mforall{}n:\mBbbN{}\msupplus{}.    (ddr(x;n)  \mmember{}  \{y:\mBbbR{}|  |x  -  y|  \mleq{}  (r1/r(5  *  10\^{}n  -  1))\}  )



Date html generated: 2017_10_03-AM-08_45_16
Last ObjectModification: 2017_07_28-AM-07_31_58

Theory : reals


Home Index