Nuprl Lemma : Machin-lemma
(π/r(4)) = ((r(4) * arctangent((r1/r(5)))) - arctangent((r1/r(239))))
Proof
Definitions occuring in Statement : 
arctangent: arctangent(x), 
pi: π, 
rdiv: (x/y), 
rsub: x - y, 
req: x = y, 
rmul: a * b, 
int-to-real: r(n), 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
rneq: x ≠ y, 
guard: {T}, 
or: P ∨ Q, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
prop: ℙ, 
nat_plus: ℕ+, 
decidable: Dec(P), 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
false: False, 
uiff: uiff(P;Q), 
le: A ≤ B, 
cand: A c∧ B, 
i-member: r ∈ I, 
rooint: (l, u), 
rdiv: (x/y), 
req_int_terms: t1 ≡ t2, 
rminus: -(x), 
halfpi: π/2, 
divide: n ÷ m, 
cubic_converge: cubic_converge(b;m), 
ifthenelse: if b then t else f fi , 
le_int: i ≤z j, 
bnot: ¬bb, 
lt_int: i <z j, 
bfalse: ff, 
btrue: tt, 
fastpi: fastpi(n), 
primrec: primrec(n;b;c), 
primtailrec: primtailrec(n;i;b;f), 
int-to-real: r(n), 
rless: x < y, 
sq_exists: ∃x:A [B[x]], 
subtype_rel: A ⊆r B, 
real: ℝ, 
rmul: a * b, 
rinv: rinv(x), 
mu-ge: mu-ge(f;n), 
absval: |i|, 
eq_int: (i =z j), 
accelerate: accelerate(k;f), 
imax: imax(a;b), 
reg-seq-inv: reg-seq-inv(x), 
reg-seq-mul: reg-seq-mul(x;y), 
rge: x ≥ y, 
rgt: x > y, 
nat: ℕ, 
rev_uimplies: rev_uimplies(P;Q), 
exp: i^n, 
subtract: n - m, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
sq_type: SQType(T), 
int_nzero: ℤ-o, 
nequal: a ≠ b ∈ T , 
rat_term_to_real: rat_term_to_real(f;t), 
rtermDivide: num "/" denom, 
rat_term_ind: rat_term_ind, 
rtermConstant: "const", 
pi1: fst(t), 
rtermMultiply: left "*" right, 
pi2: snd(t), 
radd: a + b, 
reg-seq-list-add: reg-seq-list-add(L), 
cbv_list_accum: cbv_list_accum(x,a.f[x; a];y;L), 
cons: [a / b], 
pi: π, 
int-rmul: k1 * a, 
nil: [], 
it: ⋅, 
sq_stable: SqStable(P)
Lemmas referenced : 
rtan-arctangent, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
rless_wf, 
arctangent-rleq, 
rleq-int-fractions2, 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-less_than, 
istype-false, 
arctangent_functionality_wrt_rless, 
rless-int-fractions2, 
arctangent_wf, 
member_rooint_lemma, 
arctangent-bounds, 
rminus_wf, 
halfpi_wf, 
rleq_wf, 
req_wf, 
rtan_wf, 
rless_functionality, 
arctangent0, 
req_weakening, 
rmul_preserves_rleq2, 
rleq-int, 
rmul_preserves_rless, 
rmul_wf, 
itermSubtract_wf, 
itermMultiply_wf, 
itermVar_wf, 
rinv_wf2, 
rleq_functionality, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
rtan-double, 
nat_plus_properties, 
rless_functionality_wrt_implies, 
rleq_weakening_equal, 
rleq_weakening_rless, 
rsub_wf, 
rnexp_wf, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
istype-le, 
req_functionality, 
rsub_functionality, 
rnexp_functionality, 
exp_wf2, 
req_inversion, 
rnexp-rdiv, 
rneq_functionality, 
rnexp-int, 
rdiv_functionality, 
subtype_base_sq, 
nat_plus_wf, 
set_subtype_base, 
less_than_wf, 
int_subtype_base, 
exp-one, 
rmul_preserves_req, 
radd_wf, 
itermAdd_wf, 
minus-one-mul-top, 
nequal_wf, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
req_transitivity, 
radd_functionality, 
int-rinv-cancel2, 
rmul-int, 
real_term_value_add_lemma, 
i-member_wf, 
rooint_wf, 
rneq-int, 
assert-rat-term-eq2, 
rtermDivide_wf, 
rtermMultiply_wf, 
rtermConstant_wf, 
rmul_functionality, 
rless_transitivity1, 
rleq_weakening, 
rless_transitivity2, 
rless-implies-rless, 
itermMinus_wf, 
subtype_rel_self, 
real_wf, 
real_term_value_minus_lemma, 
rtan_functionality, 
pi_wf, 
radd-preserves-rless, 
rinv-mul-as-rdiv, 
sq_stable__i-member, 
rtan-pi-over-4, 
rtan-rsub, 
rmul-rinv, 
req-int-fractions, 
rdiv-int-fractions, 
arctangent-rtan, 
arctangent_functionality, 
req-implies-req
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
closedConclusion, 
natural_numberEquality, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
inrFormation_alt, 
dependent_functionElimination, 
because_Cache, 
productElimination, 
independent_functionElimination, 
independent_pairFormation, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
universeIsType, 
dependent_set_memberEquality_alt, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
voidElimination, 
lambdaFormation_alt, 
productIsType, 
inhabitedIsType, 
setElimination, 
rename, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
int_eqEquality, 
minusEquality, 
addEquality, 
applyEquality, 
instantiate, 
cumulativity, 
intEquality, 
sqequalBase, 
setEquality, 
applyLambdaEquality, 
imageElimination, 
multiplyEquality
Latex:
(\mpi{}/r(4))  =  ((r(4)  *  arctangent((r1/r(5))))  -  arctangent((r1/r(239))))
Date html generated:
2019_10_31-AM-06_04_58
Last ObjectModification:
2019_04_03-AM-00_28_48
Theory : reals_2
Home
Index