Nuprl Lemma : iter-arcsine-contraction-property2
∀a:{a:ℝ| (r(-1) < a) ∧ (a < r1)} . ∀n:ℕ.  (|arcsine-contraction^n(a) - arcsine(a)| ≤ |a - arcsine(a)|^3^n)
Proof
Definitions occuring in Statement : 
iter-arcsine-contraction: arcsine-contraction^n(a), 
arcsine: arcsine(x), 
rleq: x ≤ y, 
rless: x < y, 
rabs: |x|, 
rnexp: x^k1, 
rsub: x - y, 
int-to-real: r(n), 
real: ℝ, 
exp: i^n, 
nat: ℕ, 
all: ∀x:A. B[x], 
and: P ∧ Q, 
set: {x:A| B[x]} , 
minus: -n, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q), 
uimplies: b supposing a, 
squash: ↓T, 
nat: ℕ, 
false: False, 
ge: i ≥ j , 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
prop: ℙ, 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
le: A ≤ B, 
less_than': less_than'(a;b), 
cand: A c∧ B, 
guard: {T}, 
req_int_terms: t1 ≡ t2, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
iter-arcsine-contraction: arcsine-contraction^n(a), 
decidable: Dec(P), 
or: P ∨ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
compose: f o g, 
nequal: a ≠ b ∈ T , 
rge: x ≥ y, 
true: True, 
subtype_rel: A ⊆r B, 
nat_plus: ℕ+, 
subtract: n - m
Lemmas referenced : 
sq_stable__rleq, 
int-to-real_wf, 
rsub_wf, 
rmul_wf, 
radd-preserves-rleq, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
le_witness_for_triv, 
subtract-1-ge-0, 
istype-nat, 
real_wf, 
rless_wf, 
radd_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermMultiply_wf, 
rleq_wf, 
rnexp_wf, 
istype-le, 
rminus_wf, 
rleq_weakening, 
rless_transitivity2, 
rleq_weakening_rless, 
itermMinus_wf, 
req-iff-rsub-is-0, 
rleq_functionality, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
iff_transitivity, 
iff_weakening_uiff, 
req_inversion, 
rnexp2, 
req_weakening, 
square-rleq-1-iff, 
rabs-rleq-iff, 
real_term_value_minus_lemma, 
fun_exp0_lemma, 
exp0_lemma, 
rabs_wf, 
arcsine_wf, 
member_rooint_lemma, 
rleq_weakening_equal, 
rnexp1, 
fun_exp_unroll, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
arcsine-contraction_wf, 
iter-arcsine-contraction_wf, 
subtract_wf, 
int_term_value_subtract_lemma, 
exp_wf4, 
rleq_functionality_wrt_implies, 
arcsine-contraction-Taylor2, 
rleq-implies-rleq, 
rabs-rless-iff, 
squash_wf, 
true_wf, 
rminus-int, 
subtype_rel_self, 
iff_weakening_equal, 
square-nonneg, 
rsqrt_wf, 
rleq_transitivity, 
rsqrt_functionality_wrt_rleq, 
rsqrt1, 
zero-rleq-rabs, 
rnexp_functionality_wrt_rleq, 
multiply_nat_wf, 
rnexp-mul, 
exp_step, 
decidable__lt, 
mul-commutes, 
exp_wf2, 
int_term_value_add_lemma, 
add-commutes
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
setElimination, 
thin, 
rename, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
independent_functionElimination, 
because_Cache, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
intWeakElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
universeIsType, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
inhabitedIsType, 
setIsType, 
productIsType, 
minusEquality, 
dependent_set_memberEquality_alt, 
productEquality, 
unionElimination, 
equalityElimination, 
equalityIstype, 
promote_hyp, 
instantiate, 
cumulativity, 
applyEquality, 
universeEquality, 
addEquality
Latex:
\mforall{}a:\{a:\mBbbR{}|  (r(-1)  <  a)  \mwedge{}  (a  <  r1)\}  .  \mforall{}n:\mBbbN{}.
    (|arcsine-contraction\^{}n(a)  -  arcsine(a)|  \mleq{}  |a  -  arcsine(a)|\^{}3\^{}n)
Date html generated:
2019_10_31-AM-06_12_53
Last ObjectModification:
2019_05_21-PM-01_18_44
Theory : reals_2
Home
Index