Nuprl Lemma : arcsine-contraction-Taylor2
∀[a:{a:ℝ| (r(-1) < a) ∧ (a < r1)} ]. ∀[x:ℝ].
∀c:ℝ. |arcsine-contraction(a;x) - arcsine(a)| ≤ (c * |x - arcsine(a)|^3) supposing (|a| ≤ c) ∧ (rsqrt(r1 - a * a) ≤ c)
Proof
Definitions occuring in Statement :
arcsine-contraction: arcsine-contraction(a;x)
,
arcsine: arcsine(x)
,
rsqrt: rsqrt(x)
,
rleq: x ≤ y
,
rless: x < y
,
rabs: |x|
,
rnexp: x^k1
,
rsub: x - y
,
rmul: a * b
,
int-to-real: r(n)
,
real: ℝ
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
and: P ∧ Q
,
set: {x:A| B[x]}
,
minus: -n
,
natural_number: $n
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
uimplies: b supposing a
,
and: P ∧ Q
,
top: Top
,
nat: ℕ
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
not: ¬A
,
implies: P
⇒ Q
,
false: False
,
sq_stable: SqStable(P)
,
uiff: uiff(P;Q)
,
rev_uimplies: rev_uimplies(P;Q)
,
subinterval: I ⊆ J
,
true: True
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
rfun: I ⟶ℝ
,
so_apply: x[s]
,
squash: ↓T
,
rleq: x ≤ y
,
rnonneg: rnonneg(x)
,
subtype_rel: A ⊆r B
,
cand: A c∧ B
,
guard: {T}
,
req_int_terms: t1 ≡ t2
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
nat_plus: ℕ+
,
rless: x < y
,
sq_exists: ∃x:A [B[x]]
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
so_lambda: λ2x y.t[x; y]
,
int_seg: {i..j-}
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
sq_type: SQType(T)
,
bnot: ¬bb
,
assert: ↑b
,
lelt: i ≤ j < k
,
so_apply: x[s1;s2]
,
eq_int: (i =z j)
,
arcsine-contraction: arcsine-contraction(a;x)
,
finite-deriv-seq: finite-deriv-seq(I;k;i,x.F[i; x])
,
Taylor-remainder: Taylor-remainder(I;n;b;a;i,x.F[i; x])
,
Taylor-approx: Taylor-approx(n;a;b;i,x.F[i; x])
,
less_than: a < b
,
rneq: x ≠ y
,
nequal: a ≠ b ∈ T
,
pointwise-req: x[k] = y[k] for k ∈ [n,m]
,
rdiv: (x/y)
,
real: ℝ
,
fact: (n)!
,
primrec: primrec(n;b;c)
,
primtailrec: primtailrec(n;i;b;f)
,
subtract: n - m
,
rsub: x - y
,
rge: x ≥ y
Lemmas referenced :
sq_stable__rleq,
rabs_wf,
rsub_wf,
arcsine-contraction_wf,
arcsine_wf,
member_rooint_lemma,
istype-void,
rmul_wf,
rnexp_wf,
istype-le,
radd-preserves-rleq,
int-to-real_wf,
rleq-iff-all-rless,
member_riiint_lemma,
rless_wf,
rminus_wf,
halfpi_wf,
derivative-rcos,
derivative-rsin,
derivative-minus,
riiint_wf,
rsin_wf,
i-member_wf,
rcos_wf,
derivative-minus-minus,
le_witness_for_triv,
rleq_wf,
rsqrt_wf,
real_wf,
radd_wf,
itermSubtract_wf,
itermAdd_wf,
itermMultiply_wf,
itermVar_wf,
itermConstant_wf,
rleq_weakening,
rless_transitivity2,
rleq_weakening_rless,
itermMinus_wf,
req-iff-rsub-is-0,
rleq_functionality,
real_polynomial_null,
istype-int,
real_term_value_sub_lemma,
real_term_value_add_lemma,
real_term_value_mul_lemma,
real_term_value_var_lemma,
real_term_value_const_lemma,
iff_transitivity,
iff_weakening_uiff,
req_inversion,
rnexp2,
req_weakening,
square-rleq-1-iff,
rabs-rleq-iff,
real_term_value_minus_lemma,
Taylor-theorem,
iproper-riiint,
nat_plus_properties,
decidable__lt,
full-omega-unsat,
intformnot_wf,
intformless_wf,
int_formula_prop_not_lemma,
int_formula_prop_less_lemma,
int_term_value_constant_lemma,
int_formula_prop_wf,
istype-less_than,
eq_int_wf,
eqtt_to_assert,
assert_of_eq_int,
eqff_to_assert,
bool_cases_sqequal,
subtype_base_sq,
bool_wf,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_int,
int_seg_wf,
istype-true,
req_wf,
sq_stable__rless,
decidable__equal_int,
int_subtype_base,
int_seg_properties,
int_seg_subtype_special,
int_seg_cases,
intformand_wf,
intformle_wf,
int_formula_prop_and_lemma,
int_term_value_var_lemma,
int_formula_prop_le_lemma,
req_functionality,
radd_functionality,
rsub_functionality,
rmul_functionality,
rcos_functionality,
rsin_functionality,
rminus_functionality,
derivative-add,
derivative-id,
derivative-sub,
derivative-const-mul,
derivative-const,
arcsine-bounds,
rsqrt-unique,
rcos-nonneg,
member_rccint_lemma,
rsin-rcos-pythag,
rnexp_functionality,
rsin-arcsine,
radd-preserves-req,
rsum_wf,
ifthenelse_wf,
istype-false,
intformeq_wf,
int_formula_prop_eq_lemma,
rsum-split-first,
rsum-zero-req,
rsum_functionality,
rdiv_wf,
fact_wf,
int_seg_subtype_nat,
rless-int,
decidable__le,
int_term_value_add_lemma,
nequal-le-implies,
fact0_redex_lemma,
rnexp_zero_lemma,
rinv_wf2,
req_transitivity,
rinv1,
rmul-identity1,
sq_stable__less_than,
rsqrt_squared,
rdiv_functionality,
rabs_functionality,
nat_plus_wf,
set_subtype_base,
less_than_wf,
rleq-int,
rmul_preserves_rleq,
rabs-rdiv,
rneq_functionality,
rabs-of-nonneg,
rmul-rinv3,
rsqrt_functionality,
rleq_functionality_wrt_implies,
r-triangle-inequality,
rleq_weakening_equal,
rabs-rmul,
zero-rleq-rabs,
radd_functionality_wrt_rleq,
rmul_functionality_wrt_rleq2,
rabs-rcos-rleq,
rabs-rsin-rleq,
rsqrt_nonneg,
rabs-difference-bound-rleq,
rmin_wf,
rmin_ub,
trivial-rsub-rleq,
rmax_wf,
rmax_lb,
trivial-rleq-radd,
rabs-bounds,
rabs-difference-symmetry,
r-triangle-inequality2,
rabs-rnexp,
rnexp-rleq,
rmul-nonneg-case1,
rnexp-nonneg,
rnexp2-nonneg,
rnexp_step,
rleq_transitivity,
squash_wf,
true_wf,
subtype_rel_self,
iff_weakening_equal,
rmul_comm
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
cut,
lambdaFormation_alt,
sqequalHypSubstitution,
productElimination,
thin,
setElimination,
rename,
extract_by_obid,
isectElimination,
dependent_set_memberEquality_alt,
hypothesisEquality,
independent_pairFormation,
hypothesis,
because_Cache,
sqequalRule,
dependent_functionElimination,
isect_memberEquality_alt,
voidElimination,
natural_numberEquality,
independent_functionElimination,
independent_isectElimination,
productIsType,
universeIsType,
lambdaEquality_alt,
setIsType,
inhabitedIsType,
imageMemberEquality,
baseClosed,
imageElimination,
equalityTransitivity,
equalitySymmetry,
functionIsTypeImplies,
applyEquality,
isectIsTypeImplies,
minusEquality,
productEquality,
approximateComputation,
int_eqEquality,
unionElimination,
dependent_pairFormation_alt,
closedConclusion,
equalityElimination,
equalityIstype,
promote_hyp,
instantiate,
cumulativity,
intEquality,
hypothesis_subsumption,
addEquality,
inrFormation_alt,
applyLambdaEquality,
inlFormation_alt,
universeEquality
Latex:
\mforall{}[a:\{a:\mBbbR{}| (r(-1) < a) \mwedge{} (a < r1)\} ]. \mforall{}[x:\mBbbR{}].
\mforall{}c:\mBbbR{}
|arcsine-contraction(a;x) - arcsine(a)| \mleq{} (c * |x - arcsine(a)|\^{}3)
supposing (|a| \mleq{} c) \mwedge{} (rsqrt(r1 - a * a) \mleq{} c)
Date html generated:
2019_10_31-AM-06_12_43
Last ObjectModification:
2019_05_21-PM-01_13_13
Theory : reals_2
Home
Index