Nuprl Lemma : monotone-bar-induction4

B,Q:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ.
  ((∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  ⇃(Q[n;s])))
   (∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. ⇃(Q[n 1;s.m@n]))  ⇃(Q[n;s])))
   (∀alpha:ℕ ⟶ ℕ
        ⇃(∃n:ℕ(B[n;alpha] ∧ (∀m:{n...}. ∀s:ℕm ⟶ ℕ.  ((alpha s ∈ (ℕm ⟶ ℕ))  B[m;s]  (∀k:ℕB[m 1;s.k@m]))))))
   ⇃(Q[0;λx.⊥]))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] seq-add: s.x@n int_upper: {i...} int_seg: {i..j-} nat: bottom: prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q true: True lambda: λx.A[x] function: x:A ⟶ B[x] add: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: and: P ∧ Q subtype_rel: A ⊆B uall: [x:A]. B[x] nat: uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A so_lambda: λ2x.t[x] int_upper: {i...} so_apply: x[s1;s2] sq_stable: SqStable(P) squash: T ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k so_lambda: λ2y.t[x; y] guard: {T} isl: isl(x) ext2Baire: ext2Baire(n;f;d) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q true: True outl: outl(x) less_than: a < b subtract: m seq-add: s.x@n nequal: a ≠ b ∈  seq-adjoin: s++t seq-append: seq-append(n;m;s1;s2) cand: c∧ B quotient: x,y:A//B[x; y]
Lemmas referenced :  strong-continuity-rel subtype_rel_function nat_wf int_seg_wf int_seg_subtype_nat istype-false subtype_rel_self all_wf int_upper_wf equal_wf upper_subtype_nat sq_stable__le nat_properties int_upper_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf istype-le seq-add_wf istype-int_upper prop-truncation-quot int_seg_properties intformless_wf int_formula_prop_less_lemma istype-nat quotient_wf exists_wf true_wf equiv_rel_true unit_wf2 decidable__equal_int intformeq_wf int_formula_prop_eq_lemma union_subtype_base set_subtype_base lelt_wf int_subtype_base unit_subtype_base istype-assert btrue_wf bfalse_wf subtype_rel_union basic_bar_induction assert_wf decidable__assert seq-adjoin_wf ext2Baire_wf squash_wf bool_wf isl_wf lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot iff_weakening_uiff less_than_wf istype-less_than le_wf btrue_neq_bfalse decidable__lt subtract_wf itermSubtract_wf int_term_value_subtract_lemma minus-one-mul add-commutes add-associates add-mul-special zero-mul zero-add int_seg_subtype add-is-int-iff primrec-wf2 add-zero not-le-2 condition-implies-le minus-add add-swap minus-one-mul-top add_functionality_wrt_le le-add-cancel2 add-member-int_seg2 eq_int_wf assert_of_eq_int decidable__equal_nat neg_assert_of_eq_int istype-top quotient-member-eq member_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  rename cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin Error :lambdaEquality_alt,  productEquality applyEquality hypothesisEquality isectElimination hypothesis because_Cache natural_numberEquality setElimination independent_isectElimination sqequalRule independent_pairFormation functionEquality closedConclusion independent_functionElimination imageMemberEquality baseClosed imageElimination Error :dependent_set_memberEquality_alt,  addEquality unionElimination approximateComputation Error :dependent_pairFormation_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination Error :universeIsType,  Error :functionIsType,  productElimination Error :inhabitedIsType,  Error :productIsType,  Error :equalityIstype,  universeEquality Error :unionIsType,  instantiate equalityTransitivity equalitySymmetry intEquality baseApply sqequalBase hyp_replacement Error :functionExtensionality_alt,  equalityElimination promote_hyp cumulativity applyLambdaEquality Error :setIsType,  minusEquality functionExtensionality int_eqReduceTrueSq int_eqReduceFalseSq lessCases Error :isect_memberFormation_alt,  axiomSqEquality Error :isectIsTypeImplies,  pointwiseFunctionality pertypeElimination

Latex:
\mforall{}B,Q:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}.
    ((\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  \00D9(Q[n;s])))
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}m:\mBbbN{}.  \00D9(Q[n  +  1;s.m@n]))  {}\mRightarrow{}  \00D9(Q[n;s])))
    {}\mRightarrow{}  (\mforall{}alpha:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
                \00D9(\mexists{}n:\mBbbN{}
                      (B[n;alpha]
                      \mwedge{}  (\mforall{}m:\{n...\}.  \mforall{}s:\mBbbN{}m  {}\mrightarrow{}  \mBbbN{}.    ((alpha  =  s)  {}\mRightarrow{}  B[m;s]  {}\mRightarrow{}  (\mforall{}k:\mBbbN{}.  B[m  +  1;s.k@m]))))))
    {}\mRightarrow{}  \00D9(Q[0;\mlambda{}x.\mbot{}]))



Date html generated: 2019_06_20-PM-02_55_53
Last ObjectModification: 2018_12_06-PM-11_35_00

Theory : continuity


Home Index