Nuprl Lemma : qexpfact-property

[n:ℕ]. ∀[x:{q:ℚ0 ≤ q} ]. ∀[p:ℚ]. ∀[b:{b:ℤ(n)! ∈ ℤ].  x ↑ qexpfact(n;x;p;b) n < (qexpfact(n;x;p;b))!


Proof




Definitions occuring in Statement :  qexpfact: qexpfact(n;x;p;b) qexp: r ↑ n qle: r ≤ s qless: r < s qmul: s rationals: fact: (n)! nat: uall: [x:A]. B[x] set: {x:A| B[x]}  subtract: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) int_upper: {i...} nat_plus: + uiff: uiff(P;Q) cand: c∧ B sq_stable: SqStable(P) squash: T qexpfact: qexpfact(n;x;p;b) bool: 𝔹 unit: Unit it: btrue: tt iff: ⇐⇒ Q ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b rev_implies:  Q top: Top true: True has-value: (a)↓ less_than: a < b less_than': less_than'(a;b) subtract: m
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than qless_witness int_seg_properties int_seg_wf subtract-1-ge-0 decidable__equal_int subtract_wf subtype_base_sq set_subtype_base int_subtype_base intformnot_wf intformeq_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma decidable__le decidable__lt istype-le subtype_rel_self sq_stable_from_decidable qless_wf qmul_wf qexp_wf qexpfact_wf subtract_nat_wf le_wf fact_wf int_upper_properties nat_plus_properties subtract-is-int-iff false_wf upper_subtype_nat sq_stable__le subtype_rel_set rationals_wf less_than_wf int-subtype-rationals decidable__qless q_less_wf eqtt_to_assert assert-q_less-eq iff_weakening_equal eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot sq_stable__equal qle_wf itermAdd_wf int_term_value_add_lemma istype-nat satisfiable-full-omega-tt qmul_one_qrng squash_wf true_wf qexp-zero value-type-has-value int-value-type rationals-value-type int_term_value_mul_lemma itermMultiply_wf add-subtract-cancel istype-void fact_unroll_1 easy-member-int_seg exp_unroll_q qmul_ac_1_qrng istype-false not-le-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel qmul_com equal-wf-base-T equal_wf int_upper_subtype_nat set_wf nat_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination Error :memTop,  sqequalRule independent_pairFormation universeIsType voidElimination isect_memberEquality_alt productElimination functionIsTypeImplies inhabitedIsType isectIsTypeImplies because_Cache unionElimination applyEquality instantiate equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality_alt productIsType promote_hyp hypothesis_subsumption isect_memberFormation_alt equalityIstype baseApply closedConclusion baseClosed intEquality sqequalBase pointwiseFunctionality imageMemberEquality imageElimination equalityElimination cumulativity setIsType addEquality lambdaFormation dependent_pairFormation lambdaEquality isect_memberEquality voidEquality computeAll universeEquality multiplyEquality callbyvalueReduce minusEquality hyp_replacement functionEquality isect_memberFormation dependent_set_memberEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x:\{q:\mBbbQ{}|  0  \mleq{}  q\}  ].  \mforall{}[p:\mBbbQ{}].  \mforall{}[b:\{b:\mBbbZ{}|  b  =  (n)!\}  ].
    p  *  x  \muparrow{}  qexpfact(n;x;p;b)  -  n  <  (qexpfact(n;x;p;b))!



Date html generated: 2020_05_20-AM-09_26_37
Last ObjectModification: 2019_12_31-PM-04_57_23

Theory : rationals


Home Index