Nuprl Lemma : qexpfact-property
∀[n:ℕ]. ∀[x:{q:ℚ| 0 ≤ q} ]. ∀[p:ℚ]. ∀[b:{b:ℤ| b = (n)! ∈ ℤ} ].  p * x ↑ qexpfact(n;x;p;b) - n < (qexpfact(n;x;p;b))!
Proof
Definitions occuring in Statement : 
qexpfact: qexpfact(n;x;p;b)
, 
qexp: r ↑ n
, 
qle: r ≤ s
, 
qless: r < s
, 
qmul: r * s
, 
rationals: ℚ
, 
fact: (n)!
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
subtract: n - m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
prop: ℙ
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
int_upper: {i...}
, 
nat_plus: ℕ+
, 
uiff: uiff(P;Q)
, 
cand: A c∧ B
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
qexpfact: qexpfact(n;x;p;b)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
iff: P 
⇐⇒ Q
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
top: Top
, 
true: True
, 
has-value: (a)↓
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
subtract: n - m
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
qless_witness, 
int_seg_properties, 
int_seg_wf, 
subtract-1-ge-0, 
decidable__equal_int, 
subtract_wf, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
intformnot_wf, 
intformeq_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
decidable__le, 
decidable__lt, 
istype-le, 
subtype_rel_self, 
sq_stable_from_decidable, 
qless_wf, 
qmul_wf, 
qexp_wf, 
qexpfact_wf, 
subtract_nat_wf, 
le_wf, 
fact_wf, 
int_upper_properties, 
nat_plus_properties, 
subtract-is-int-iff, 
false_wf, 
upper_subtype_nat, 
sq_stable__le, 
subtype_rel_set, 
rationals_wf, 
less_than_wf, 
int-subtype-rationals, 
decidable__qless, 
q_less_wf, 
eqtt_to_assert, 
assert-q_less-eq, 
iff_weakening_equal, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
sq_stable__equal, 
qle_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
istype-nat, 
satisfiable-full-omega-tt, 
qmul_one_qrng, 
squash_wf, 
true_wf, 
qexp-zero, 
value-type-has-value, 
int-value-type, 
rationals-value-type, 
int_term_value_mul_lemma, 
itermMultiply_wf, 
add-subtract-cancel, 
istype-void, 
fact_unroll_1, 
easy-member-int_seg, 
exp_unroll_q, 
qmul_ac_1_qrng, 
istype-false, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
qmul_com, 
equal-wf-base-T, 
equal_wf, 
int_upper_subtype_nat, 
set_wf, 
nat_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :memTop, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
isect_memberEquality_alt, 
productElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
isectIsTypeImplies, 
because_Cache, 
unionElimination, 
applyEquality, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
dependent_set_memberEquality_alt, 
productIsType, 
promote_hyp, 
hypothesis_subsumption, 
isect_memberFormation_alt, 
equalityIstype, 
baseApply, 
closedConclusion, 
baseClosed, 
intEquality, 
sqequalBase, 
pointwiseFunctionality, 
imageMemberEquality, 
imageElimination, 
equalityElimination, 
cumulativity, 
setIsType, 
addEquality, 
lambdaFormation, 
dependent_pairFormation, 
lambdaEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
universeEquality, 
multiplyEquality, 
callbyvalueReduce, 
minusEquality, 
hyp_replacement, 
functionEquality, 
isect_memberFormation, 
dependent_set_memberEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x:\{q:\mBbbQ{}|  0  \mleq{}  q\}  ].  \mforall{}[p:\mBbbQ{}].  \mforall{}[b:\{b:\mBbbZ{}|  b  =  (n)!\}  ].
    p  *  x  \muparrow{}  qexpfact(n;x;p;b)  -  n  <  (qexpfact(n;x;p;b))!
Date html generated:
2020_05_20-AM-09_26_37
Last ObjectModification:
2019_12_31-PM-04_57_23
Theory : rationals
Home
Index