Nuprl Lemma : consensus-accum-num-property1

[V:Type]
  ∀A:Id List. ∀t:ℕ+. ∀f:(V List) ─→ V. ∀v0:V. ∀L:consensus-rcv(V;A) List.
    let b,i,as,vs,v consensus-accum-num-state(t;f;v0;L) in (filter(λr.i 1 <inning(r);L)
                                                             []
                                                             ∈ (consensus-rcv(V;A) List))
    ∧ (||as|| ||vs|| ∈ ℤ)
    ∧ (zip(as;vs) votes-from-inning(i 1;L) ∈ (({b:Id| (b ∈ A)}  × V) List))
    ∧ (0 ≤ i)
    ∧ 1 ≤ supposing ¬↑null(L)
    ∧ (||values-for-distinct(IdDeq;votes-from-inning(i 1;L))|| ≤ (2 t))


Proof




Definitions occuring in Statement :  consensus-accum-num-state: consensus-accum-num-state(t;f;v0;L) votes-from-inning: votes-from-inning(i;L) rcvd-inning-gt: i <inning(r) consensus-rcv: consensus-rcv(V;A) id-deq: IdDeq Id: Id values-for-distinct: values-for-distinct(eq;L) zip: zip(as;bs) l_member: (x ∈ l) filter: filter(P;l) length: ||as|| null: null(as) nil: [] list: List nat_plus: + assert: b spreadn: let a,b,c,d,e in v[a; b; c; d; e] uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] not: ¬A and: P ∧ Q set: {x:A| B[x]}  lambda: λx.A[x] function: x:A ─→ B[x] product: x:A × B[x] multiply: m subtract: m natural_number: $n int: universe: Type equal: t ∈ T
Lemmas :  id-deq_wf subtype_rel-deq Id_wf l_member_wf sq_stable__l_member decidable__equal_Id equal_wf set_wf last_induction consensus-rcv_wf consensus-accum-num-state_wf nat_plus_subtype_nat bool_wf list_wf equal-wf-T-base filter_wf5 rcvd-inning-gt_wf subtract_wf length_wf length_of_nil_lemma zip_wf votes-from-inning_wf le_wf not_wf assert_wf null_wf3 subtype_rel_list top_wf values-for-distinct_wf filter_nil_lemma zip_nil_lemma null_nil_lemma mapfilter_nil_lemma map_nil_lemma remove_repeats_nil_lemma nil_wf false_wf true_wf mul_bounds_1a list_accum_append list_accum_cons_lemma list_accum_nil_lemma nat_plus_wf eq_int_wf equal-wf-base int_subtype_base mapfilter-append votes-from-inning-is-nil decidable__lt le_antisymmetry_iff condition-implies-le add-associates minus-zero add-zero add-commutes add_functionality_wrt_le zero-add le-add-cancel-alt list_ind_nil_lemma filter_cons_lemma less_than_wf append_wf cons_wf cs-initial-rcv_wf bnot_wf append-nil rcvd-innings-nil decidable__le not-le-2 minus-add add-swap le-add-cancel2 not-equal-2 le-add-cancel minus-one-mul and_wf length_wf_nat nat_wf append_back_nil lt_int_wf sq_stable__le less-iff-le cs-rcv-vote_wf assert_of_lt_int less_than_transitivity2 le_weakening2 less_than_irreflexivity equal-wf-base-T map_cons_lemma less_than_transitivity1 le_weakening le_int_wf length_of_cons_lemma zip_cons_cons_lemma minus-minus apply_alist_cons_lemma remove_repeats_cons_lemma add-mul-special zero-mul remove-repeats_wf length-append uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot filter_append_sq assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int zip-append le_antisymmetry unzip_zip length-map map_functionality iff_weakening_equal subtype_base_sq list_subtype_base set_subtype_base atom2_subtype_base map_wf map_append_sq remove-repeats-append-one
\mforall{}[V:Type]
    \mforall{}A:Id  List.  \mforall{}t:\mBbbN{}\msupplus{}.  \mforall{}f:(V  List)  {}\mrightarrow{}  V.  \mforall{}v0:V.  \mforall{}L:consensus-rcv(V;A)  List.
        let  b,i,as,vs,v  =  consensus-accum-num-state(t;f;v0;L)  in  (filter(\mlambda{}r.i  -  1  <z  inning(r);L)  =  [])
        \mwedge{}  (||as||  =  ||vs||)
        \mwedge{}  (zip(as;vs)  =  votes-from-inning(i  -  1;L))
        \mwedge{}  (0  \mleq{}  i)
        \mwedge{}  1  \mleq{}  i  supposing  \mneg{}\muparrow{}null(L)
        \mwedge{}  (||values-for-distinct(IdDeq;votes-from-inning(i  -  1;L))||  \mleq{}  (2  *  t))



Date html generated: 2015_07_17-AM-11_50_30
Last ObjectModification: 2015_02_04-PM-05_47_55

Home Index