Nuprl Lemma : arctangent-rinv
∀[x:{x:ℝ| x ∈ (r0, ∞)} ]. (arctangent(rinv(x)) = (π/2 - arctangent(x)))
Proof
Definitions occuring in Statement : 
arctangent: arctangent(x), 
halfpi: π/2, 
roiint: (l, ∞), 
i-member: r ∈ I, 
rsub: x - y, 
rinv: rinv(x), 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
uall: ∀[x:A]. B[x], 
set: {x:A| B[x]} , 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q), 
uimplies: b supposing a, 
implies: P ⇒ Q, 
rneq: x ≠ y, 
guard: {T}, 
or: P ∨ Q, 
all: ∀x:A. B[x], 
top: Top, 
sq_stable: SqStable(P), 
squash: ↓T, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
rfun: I ⟶ℝ, 
so_apply: x[s], 
req_int_terms: t1 ≡ t2, 
false: False, 
not: ¬A, 
nat: ℕ, 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
rless: x < y, 
sq_exists: ∃x:A [B[x]], 
nat_plus: ℕ+, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
less_than: a < b, 
less_than': less_than'(a;b), 
true: True, 
rge: x ≥ y, 
rgt: x > y, 
rfun-eq: rfun-eq(I;f;g), 
r-ap: f(x), 
rdiv: (x/y), 
cand: A c∧ B, 
rat_term_to_real: rat_term_to_real(f;t), 
rtermConstant: "const", 
rat_term_ind: rat_term_ind, 
pi1: fst(t), 
rtermAdd: left "+" right, 
rtermDivide: num "/" denom, 
rtermVar: rtermVar(var), 
pi2: snd(t), 
nequal: a ≠ b ∈ T , 
int_nzero: ℤ-o, 
sq_type: SQType(T), 
pi: π
Lemmas referenced : 
radd-preserves-req, 
rsub_wf, 
halfpi_wf, 
arctangent_wf, 
req_witness, 
rinv_wf2, 
member_roiint_lemma, 
istype-void, 
sq_stable__rless, 
int-to-real_wf, 
rless_wf, 
real_wf, 
i-member_wf, 
roiint_wf, 
radd_wf, 
rdiv_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermVar_wf, 
antiderivatives-equal, 
iproper-roiint, 
derivative-const, 
req_functionality, 
req_transitivity, 
radd_functionality, 
req_weakening, 
arctangent_functionality, 
rinv-as-rdiv, 
req-iff-rsub-is-0, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
rnexp_wf, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-le, 
rnexp-positive, 
nat_plus_properties, 
trivial-rless-radd, 
rless-int, 
rless_functionality_wrt_implies, 
rleq_weakening_equal, 
rleq_weakening_rless, 
derivative-arctangent, 
rnexp2-nonneg, 
riiint_wf, 
subinterval-riiint, 
radd_functionality_wrt_rleq, 
derivative_functionality2, 
arctangent-chain-rule, 
rdiv_functionality, 
rnexp_functionality, 
req_wf, 
derivative-rinv-basic, 
rmul_preserves_rless, 
rmul_wf, 
itermMultiply_wf, 
rless_functionality, 
rmul-rinv, 
real_term_value_mul_lemma, 
derivative-add, 
derivative_functionality, 
req_inversion, 
rnexp-rdiv, 
rnexp-one, 
rmul-is-positive, 
rdiv-rdiv, 
assert-rat-term-eq2, 
rtermAdd_wf, 
rtermDivide_wf, 
rtermConstant_wf, 
rtermVar_wf, 
radd_comm, 
rmul_functionality, 
rinv1, 
rmul-identity1, 
pi_wf, 
arctangent1, 
rmul_comm, 
nequal_wf, 
true_wf, 
equal-wf-base, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
decidable__equal_int, 
int_subtype_base, 
subtype_base_sq, 
int-rmul_wf, 
rmul_preserves_req, 
int-rinv-cancel, 
int-rmul-req
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesis, 
setElimination, 
rename, 
productElimination, 
independent_isectElimination, 
independent_functionElimination, 
sqequalRule, 
inrFormation_alt, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
natural_numberEquality, 
hypothesisEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
universeIsType, 
setIsType, 
closedConclusion, 
lambdaEquality_alt, 
inhabitedIsType, 
approximateComputation, 
int_eqEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation_alt, 
dependent_set_memberEquality_alt, 
unionElimination, 
dependent_pairFormation_alt, 
independent_pairFormation, 
minusEquality, 
equalityIstype, 
inlFormation_alt, 
productIsType, 
inrFormation, 
dependent_set_memberEquality, 
voidEquality, 
isect_memberEquality, 
dependent_pairFormation, 
lambdaEquality, 
intEquality, 
lambdaFormation, 
addLevel, 
cumulativity, 
instantiate
Latex:
\mforall{}[x:\{x:\mBbbR{}|  x  \mmember{}  (r0,  \minfty{})\}  ].  (arctangent(rinv(x))  =  (\mpi{}/2  -  arctangent(x)))
Date html generated:
2019_10_31-AM-06_05_16
Last ObjectModification:
2019_04_03-AM-00_28_42
Theory : reals_2
Home
Index