Nuprl Lemma : cpsquicksort-quicksort
∀[T:Type]
∀[A:Type]. ∀[cmp:comparison(T)]. ∀L:T List. ∀[k:(T List) ⟶ A]. (cpsquicksort(cmp;L;k) ~ k quicksort(cmp;L))
supposing valueall-type(T)
Proof
Definitions occuring in Statement :
cpsquicksort: cpsquicksort(cmp;L;k)
,
quicksort: quicksort(cmp;L)
,
comparison: comparison(T)
,
list: T List
,
valueall-type: valueall-type(T)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
apply: f a
,
function: x:A ⟶ B[x]
,
universe: Type
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
not: ¬A
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
guard: {T}
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
decidable: Dec(P)
,
or: P ∨ Q
,
subtype_rel: A ⊆r B
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
less_than: a < b
,
squash: ↓T
,
cpsquicksort: cpsquicksort(cmp;L;k)
,
quicksort: quicksort(cmp;L)
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
cons: [a / b]
,
sq_stable: SqStable(P)
,
subtract: n - m
,
true: True
,
callbyvalueall: callbyvalueall,
listp: A List+
,
has-value: (a)↓
,
has-valueall: has-valueall(a)
,
comparison: comparison(T)
,
let: let,
cand: A c∧ B
,
l_exists: (∃x∈L. P[x])
,
equiv_rel: EquivRel(T;x,y.E[x; y])
,
sq_type: SQType(T)
,
lt_int: i <z j
,
assert: ↑b
,
refl: Refl(T;x,y.E[x; y])
Lemmas referenced :
nat_properties,
satisfiable-full-omega-tt,
intformand_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformless_wf,
int_formula_prop_and_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
ge_wf,
less_than_wf,
list_wf,
le_wf,
length_wf,
int_seg_wf,
int_seg_properties,
decidable__le,
subtract_wf,
intformnot_wf,
itermSubtract_wf,
int_formula_prop_not_lemma,
int_term_value_subtract_lemma,
decidable__equal_int,
int_seg_subtype,
false_wf,
intformeq_wf,
int_formula_prop_eq_lemma,
non_neg_length,
decidable__lt,
lelt_wf,
null_wf3,
subtype_rel_list,
top_wf,
bool_wf,
uiff_transitivity,
equal-wf-T-base,
assert_wf,
eqtt_to_assert,
assert_of_null,
iff_transitivity,
bnot_wf,
not_wf,
iff_weakening_uiff,
eqff_to_assert,
assert_of_bnot,
valueall-type-has-valueall,
hd_wf,
list-cases,
length_of_nil_lemma,
nil_wf,
product_subtype_list,
length_of_cons_lemma,
length_wf_nat,
nat_wf,
not-ge-2,
sq_stable__le,
condition-implies-le,
minus-add,
minus-one-mul,
add-swap,
minus-one-mul-top,
add-associates,
add-commutes,
add_functionality_wrt_le,
add-zero,
le-add-cancel2,
equal_wf,
evalall-reduce,
listp_properties,
not-lt-2,
zero-add,
le-add-cancel,
list-valueall-type,
filter_wf5,
l_member_wf,
lt_int_wf,
eq_int_wf,
length-filter-decreases,
select0,
subtype_base_sq,
int_subtype_base,
comparison-equiv,
select_wf,
itermAdd_wf,
int_term_value_add_lemma,
comparison_wf,
valueall-type_wf,
squash_wf,
true_wf,
iff_weakening_equal,
cpsquicksort_wf,
append_wf,
quicksort_wf,
sorted-by_wf,
permutation_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lambdaFormation,
thin,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
hypothesisEquality,
hypothesis,
setElimination,
rename,
intWeakElimination,
natural_numberEquality,
independent_isectElimination,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
sqequalRule,
independent_pairFormation,
computeAll,
independent_functionElimination,
sqequalAxiom,
functionEquality,
cumulativity,
because_Cache,
productElimination,
unionElimination,
applyEquality,
equalityTransitivity,
equalitySymmetry,
applyLambdaEquality,
hypothesis_subsumption,
dependent_set_memberEquality,
imageElimination,
equalityElimination,
baseClosed,
impliesFunctionality,
promote_hyp,
addEquality,
imageMemberEquality,
minusEquality,
callbyvalueReduce,
setEquality,
instantiate,
hyp_replacement,
productEquality,
universeEquality,
functionExtensionality
Latex:
\mforall{}[T:Type]
\mforall{}[A:Type]. \mforall{}[cmp:comparison(T)].
\mforall{}L:T List. \mforall{}[k:(T List) {}\mrightarrow{} A]. (cpsquicksort(cmp;L;k) \msim{} k quicksort(cmp;L))
supposing valueall-type(T)
Date html generated:
2018_05_21-PM-07_34_57
Last ObjectModification:
2017_07_26-PM-05_09_12
Theory : general
Home
Index