Nuprl Lemma : interleaving_filter2
∀[T:Type]
  ∀L,L1,L2:T List.
    (interleaving(T;L1;L2;L)
    
⇐⇒ ∃P:ℕ||L|| ⟶ 𝔹. ((L1 = filter2(P;L) ∈ (T List)) ∧ (L2 = filter2(λi.(¬b(P i));L) ∈ (T List))))
Proof
Definitions occuring in Statement : 
interleaving: interleaving(T;L1;L2;L)
, 
filter2: filter2(P;L)
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
bnot: ¬bb
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
exists: ∃x:A. B[x]
, 
rev_implies: P 
⇐ Q
, 
top: Top
, 
le: A ≤ B
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
uiff: uiff(P;Q)
, 
cand: A c∧ B
, 
not: ¬A
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
uimplies: b supposing a
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
guard: {T}
, 
interleaving: interleaving(T;L1;L2;L)
, 
subtype_rel: A ⊆r B
, 
less_than: a < b
, 
squash: ↓T
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
eq_int: (i =z j)
, 
subtract: n - m
, 
bnot: ¬bb
, 
sq_type: SQType(T)
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
true: True
, 
select: L[n]
, 
nil: []
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
less_than': less_than'(a;b)
, 
cons: [a / b]
, 
colength: colength(L)
, 
nat_plus: ℕ+
Lemmas referenced : 
list_induction, 
all_wf, 
list_wf, 
iff_wf, 
interleaving_wf, 
exists_wf, 
int_seg_wf, 
length_wf, 
bool_wf, 
equal_wf, 
filter2_wf, 
bnot_wf, 
istype-universe, 
equal-wf-T-base, 
nil_wf, 
filter2_nil_lemma, 
length_of_nil_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
itermAdd_wf, 
intformeq_wf, 
intformnot_wf, 
decidable__equal_int, 
non_neg_length, 
length_zero, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_properties, 
int_seg_properties, 
nil_interleaving, 
nat_wf, 
length_wf_nat, 
length_of_cons_lemma, 
istype-void, 
cons_wf, 
le_wf, 
less_than_wf, 
interleaving_of_cons, 
tl_wf, 
eq_int_wf, 
equal-wf-base, 
set_subtype_base, 
lelt_wf, 
istype-int, 
int_subtype_base, 
assert_wf, 
btrue_wf, 
not_wf, 
subtract_wf, 
decidable__le, 
full-omega-unsat, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
decidable__lt, 
add-is-int-iff, 
false_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_eq_int, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
squash_wf, 
true_wf, 
cons_filter2, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
subtype_rel_self, 
iff_weakening_equal, 
bfalse_wf, 
ge_wf, 
list-cases, 
stuck-spread, 
istype-base, 
reduce_tl_nil_lemma, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
istype-false, 
subtract-1-ge-0, 
spread_cons_lemma, 
reduce_tl_cons_lemma, 
add-subtract-cancel, 
add_nat_plus, 
nat_plus_properties, 
add-member-int_seg2, 
cons_interleaving, 
interleaving_symmetry
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
hypothesis, 
because_Cache, 
functionEquality, 
natural_numberEquality, 
productEquality, 
applyLambdaEquality, 
functionIsType, 
universeIsType, 
inhabitedIsType, 
independent_functionElimination, 
rename, 
productIsType, 
equalityIsType1, 
applyEquality, 
dependent_functionElimination, 
universeEquality, 
baseClosed, 
lambdaEquality, 
cumulativity, 
independent_pairFormation, 
lambdaFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
unionElimination, 
computeAll, 
intEquality, 
int_eqEquality, 
independent_isectElimination, 
equalitySymmetry, 
equalityTransitivity, 
setElimination, 
dependent_pairFormation, 
productElimination, 
hyp_replacement, 
dependent_set_memberEquality, 
isect_memberEquality_alt, 
addEquality, 
dependent_set_memberEquality_alt, 
dependent_pairFormation_alt, 
baseApply, 
closedConclusion, 
equalityIsType4, 
approximateComputation, 
pointwiseFunctionality, 
promote_hyp, 
imageElimination, 
equalityElimination, 
equalityIsType2, 
instantiate, 
imageMemberEquality, 
intWeakElimination, 
axiomEquality, 
functionIsTypeImplies, 
hypothesis_subsumption, 
functionExtensionality_alt
Latex:
\mforall{}[T:Type]
    \mforall{}L,L1,L2:T  List.
        (interleaving(T;L1;L2;L)
        \mLeftarrow{}{}\mRightarrow{}  \mexists{}P:\mBbbN{}||L||  {}\mrightarrow{}  \mBbbB{}.  ((L1  =  filter2(P;L))  \mwedge{}  (L2  =  filter2(\mlambda{}i.(\mneg{}\msubb{}(P  i));L))))
Date html generated:
2019_10_15-AM-10_56_35
Last ObjectModification:
2018_10_09-AM-10_11_44
Theory : list!
Home
Index