Nuprl Lemma : adjacent-run-states
∀[M:Type ─→ Type]
  ∀n2m:ℕ ─→ pMsg(P.M[P]). ∀l2m:Id ─→ pMsg(P.M[P]). ∀S:System(P.M[P]). ∀env:pEnvType(P.M[P]). ∀x:Id. ∀n,m:ℕ+.
    (run-event-state-when(pRun(S;env;n2m;l2m);<n, x>) ⊆ run-event-state-when(pRun(S;env;n2m;l2m);<m, x>)) supposing 
       ((∀a:runEvents(pRun(S;env;n2m;l2m))
           ¬((n ≤ run-event-step(a)) ∧ run-event-step(a) < m) supposing run-event-loc(a) = x ∈ Id) and 
       (n ≤ m)) 
  supposing Continuous+(P.M[P])
Proof
Definitions occuring in Statement : 
run-event-step: run-event-step(e)
, 
run-event-loc: run-event-loc(e)
, 
run-event-state-when: run-event-state-when(r;e)
, 
runEvents: runEvents(r)
, 
pRun: pRun(S0;env;nat2msg;loc2msg)
, 
pEnvType: pEnvType(T.M[T])
, 
System: System(P.M[P])
, 
pMsg: pMsg(P.M[P])
, 
Process: Process(P.M[P])
, 
Id: Id
, 
l_contains: A ⊆ B
, 
strong-type-continuous: Continuous+(T.F[T])
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
function: x:A ─→ B[x]
, 
pair: <a, b>
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
all_wf, 
runEvents_wf, 
Id_wf, 
run-event-loc_wf, 
not_wf, 
le_wf, 
run-event-step_wf, 
less_than_wf, 
nat_plus_wf, 
nat_wf, 
subtract_wf, 
l_contains_wf, 
Process_wf, 
run-event-state-when_wf, 
pRun_wf, 
set_wf, 
primrec-wf2, 
add-zero, 
l_contains_weakening, 
l_contains_transitivity, 
decidable__lt, 
false_wf, 
less-iff-le, 
condition-implies-le, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
le-add-cancel2, 
equal_wf, 
assert_wf, 
eq_id_wf, 
strong-type-continuous_wf, 
ldag_wf, 
pInTransit_wf, 
pMsg_wf, 
list_wf, 
component_wf, 
nil_wf, 
list_ind_nil_lemma, 
mapfilter_wf, 
mapfilter_nil_lemma, 
list_induction, 
append_wf, 
list_accum_wf, 
System_wf, 
deliver-msg-to-comp_wf, 
list_accum_cons_lemma, 
append_back_nil, 
filter_cons_lemma, 
bool_wf, 
eqtt_to_assert, 
assert-eq-id, 
map_cons_lemma, 
eq_id_self, 
btrue_wf, 
not_assert_elim, 
and_wf, 
btrue_neq_bfalse, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
cons_wf, 
l_all_iff, 
l_member_wf, 
map_wf, 
filter_wf5, 
subtype_rel_dep_function, 
subtype_rel_self, 
member_append, 
member_singleton, 
or_wf, 
cons_member, 
append_assoc_sq, 
list_ind_cons_lemma, 
Process-apply_wf, 
pExt_wf, 
lg-append_wf_dag, 
add-cause_wf, 
zero-le-nat, 
is-run-event_wf, 
eq_int_wf, 
assert_of_eq_int, 
neg_assert_of_eq_int, 
int_subtype_base, 
fulpRunType_wf, 
unit_wf2, 
pRun_wf2, 
top_wf, 
int_seg_wf, 
int_seg_subtype-nat, 
lg-is-source_wf, 
lg-label_wf, 
eq_atom_wf, 
com-kind_wf, 
assert_of_eq_atom, 
comm-msg_wf, 
lg-remove_wf_dag, 
neg_assert_of_eq_atom, 
mapfilter-contains, 
comm-create_wf, 
select_wf, 
sq_stable__le, 
select_member, 
length_wf, 
lt_int_wf, 
lg-size_wf, 
bnot_wf, 
assert_elim, 
bfalse_wf, 
bool_cases, 
assert_of_lt_int, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
nat_plus_properties, 
trivial-int-eq1, 
isect_wf, 
add-mul-special, 
zero-mul
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}n2m:\mBbbN{}  {}\mrightarrow{}  pMsg(P.M[P]).  \mforall{}l2m:Id  {}\mrightarrow{}  pMsg(P.M[P]).  \mforall{}S:System(P.M[P]).  \mforall{}env:pEnvType(P.M[P]).  \mforall{}x:Id.
    \mforall{}n,m:\mBbbN{}\msupplus{}.
        (run-event-state-when(pRun(S;env;n2m;l2m);<n,  x>)  \msubseteq{}  run-event-state-when(pRun(S;env;n2m;l2m);<m,\000C  x>))  supposing 
              ((\mforall{}a:runEvents(pRun(S;env;n2m;l2m))
                      \mneg{}((n  \mleq{}  run-event-step(a))  \mwedge{}  run-event-step(a)  <  m)  supposing  run-event-loc(a)  =  x)  and 
              (n  \mleq{}  m)) 
    supposing  Continuous+(P.M[P])
Date html generated:
2015_07_23-AM-11_13_46
Last ObjectModification:
2015_01_29-AM-00_12_44
Home
Index