Nuprl Lemma : run-event-cases

[M:Type ─→ Type]
  ∀S0:System(P.M[P]). ∀r:pRunType(P.M[P]). ∀e1,e2:runEvents(r).
    (((run-event-local-pred(r;e2) run-event-local-pred(r;e1) ∈ (runEvents(r)?))
       ∧ (run-event-interval(r;e1;e2) [e2] ∈ (runEvents(r) List)))
       ∨ (∃e:runEvents(r)
           (run-event-step(e) < run-event-step(e2)
           ∧ (run-event-step(e1) ≤ run-event-step(e))
           ∧ ((run-event-loc(e1) run-event-loc(e) ∈ Id) ∧ (run-event-local-pred(r;e2) (inl e) ∈ (runEvents(r)?)))
           ∧ (run-event-interval(r;e1;e2) (run-event-interval(r;e1;e) [e2]) ∈ (runEvents(r) List))))) supposing 
       ((run-event-step(e1) ≤ run-event-step(e2)) and 
       (run-event-loc(e1) run-event-loc(e2) ∈ Id))


Proof




Definitions occuring in Statement :  run-event-local-pred: run-event-local-pred(r;e) run-event-interval: run-event-interval(r;e1;e2) run-event-step: run-event-step(e) run-event-loc: run-event-loc(e) runEvents: runEvents(r) pRunType: pRunType(T.M[T]) System: System(P.M[P]) Id: Id append: as bs cons: [a b] nil: [] list: List less_than: a < b uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B all: x:A. B[x] exists: x:A. B[x] or: P ∨ Q and: P ∧ Q unit: Unit function: x:A ─→ B[x] inl: inl x union: left right universe: Type equal: t ∈ T
Lemmas :  sq_stable__assert is-run-event_wf and_wf equal_wf Id_wf assert_elim subtype_base_sq bool_wf bool_subtype_base atom2_subtype_base from-upto-split sq_stable__le decidable__le false_wf not-le-2 condition-implies-le minus-add minus-one-mul add-swap add-mul-special zero-mul add-zero add-associates add-commutes le-add-cancel mapfilter_wf le_wf less_than_wf from-upto_wf assert_wf subtype_rel_sets set_wf subtype_rel_list top_wf int_seg_wf int_seg_subtype-nat lelt_wf list_wf le_transitivity lt_int_wf eqtt_to_assert assert_of_lt_int value-type-has-value int-value-type less_than_irreflexivity eqff_to_assert bool_cases_sqequal assert-bnot filter_cons_lemma filter_nil_lemma assert_of_null null_wf3 map_cons_lemma map_nil_lemma mapfilter-append null_append subtype_rel_nested_set2 filter_type map_wf nil_wf cons_wf subtype_top subtype_rel_product subtype_rel_set btrue_neq_bfalse btrue_wf isl_wf pi2_wf pi1_wf_top bfalse_wf subtype_rel_list_set append_wf equal-wf-base-T exists_wf unit_wf2 nat_wf it_wf null_nil_lemma null_cons_lemma list_ind_cons_lemma product_subtype_list list_ind_nil_lemma list-cases last_wf not_wf equal-wf-T-base squash_wf true_wf set_subtype_base product_subtype_base int_subtype_base list_subtype_base nat_properties less_than_transitivity1 ge_wf add_functionality_wrt_le zero-add subtract_wf not-ge-2 less-iff-le minus-minus pRunType_wf from-upto-nil le_antisymmetry le-add-cancel-alt mapfilter-singleton trivial-int-eq1 length_of_nil_lemma length_of_cons_lemma last_append bnot_wf append-nil not-equal-2 decidable__equal_int decidable__assert equal_functionality_wrt_subtype_rel2

Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}S0:System(P.M[P]).  \mforall{}r:pRunType(P.M[P]).  \mforall{}e1,e2:runEvents(r).
        (((run-event-local-pred(r;e2)  =  run-event-local-pred(r;e1))
              \mwedge{}  (run-event-interval(r;e1;e2)  =  [e2]))
              \mvee{}  (\mexists{}e:runEvents(r)
                      (run-event-step(e)  <  run-event-step(e2)
                      \mwedge{}  (run-event-step(e1)  \mleq{}  run-event-step(e))
                      \mwedge{}  ((run-event-loc(e1)  =  run-event-loc(e))  \mwedge{}  (run-event-local-pred(r;e2)  =  (inl  e)))
                      \mwedge{}  (run-event-interval(r;e1;e2)  =  (run-event-interval(r;e1;e)  @  [e2])))))  supposing 
              ((run-event-step(e1)  \mleq{}  run-event-step(e2))  and 
              (run-event-loc(e1)  =  run-event-loc(e2)))



Date html generated: 2015_07_23-AM-11_12_22
Last ObjectModification: 2015_07_16-AM-09_37_56

Home Index