Nuprl Lemma : system-type-properties

Gamma:j⊢. ∀sys:(phi:{Gamma ⊢ _:𝔽} × {Gamma, phi ⊢ _}) List.
  (compatible-system{i:l}(Gamma;sys)
   (Gamma, \/(map(λp.(fst(p));sys)) ⊢ system-type(sys)
     ∧ (∀i:ℕ||sys||. (system-type(sys) (snd(sys[i])) ∈ {Gamma, fst(sys[i]) ⊢ _}))))


Proof




Definitions occuring in Statement :  system-type: system-type(sys) compatible-system: compatible-system{i:l}(Gamma;sys) context-subset: Gamma, phi face-or-list: \/(L) face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet select: L[n] length: ||as|| map: map(f;as) list: List int_seg: {i..j-} pi1: fst(t) pi2: snd(t) all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T lambda: λx.A[x] product: x:A × B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] and: P ∧ Q prop: or: P ∨ Q cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) subtype_rel: A ⊆B system-type: system-type(sys) face-or-list: \/(L) select: L[n] cand: c∧ B int_seg: {i..j-} lelt: i ≤ j < k compatible-system: compatible-system{i:l}(Gamma;sys) iff: ⇐⇒ Q l_all: (∀x∈L.P[x]) pi1: fst(t) bdd-distributive-lattice: BoundedDistributiveLattice l_exists: (∃x∈L. P[x]) cubical-type-at: A(a) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt rev_implies:  Q respects-equality: respects-equality(S;T) same-cubical-type: Gamma ⊢ B compose: g face-term-iff: Gamma ⊢ (phi ⇐⇒ psi) face-term-implies: Gamma ⊢ (phi  psi) face-0: 0(𝔽) cubical-term-at: u(a) ext-eq: A ≡ B bool: 𝔹 unit: Unit uiff: uiff(P;Q) pi2: snd(t) bnot: ¬bb assert: b
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than cubical-term_wf face-type_wf cubical-type_wf context-subset_wf list-cases product_subtype_list colength-cons-not-zero colength_wf_list istype-void istype-le subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le le_wf istype-nat list_wf cubical_set_wf reduce_nil_lemma map_nil_lemma length_of_nil_lemma stuck-spread istype-base discrete-cubical-type_wf top_wf face-0_wf int_seg_properties int_seg_wf compatible-system_wf nil_wf pairwise-cons equal_wf face-and_wf subset-cubical-type face-term-implies-subset face-term-and-implies1 face-term-and-implies2 cons_wf length_wf pair-eta select_wf decidable__lt context-subset-subtype-and2 context-subset-subtype face-or-list_wf map_wf pi1_wf_top lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf lattice-1_wf I_cube_wf fset_wf nat_wf face-or-list-eq-1 map-length select-map subtype_rel_list face-and-eq-1 cubical-term-at_wf subtype_rel_self length-map face-type-at respects-equality_weakening same-cubical-type-by-list-cases map-map reduce_cons_lemma map_cons_lemma face-lattice-0-not-1 face-term-iff_wf face-or-eq-1 face-or_wf context-subset_functionality equal_functionality_wrt_subtype_rel2 length_of_cons_lemma case-type_wf le_int_wf eqtt_to_assert assert_of_le_int eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf select-cons case-type-same1 add-is-int-iff false_wf case-type-same2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination Error :memTop,  independent_pairFormation universeIsType voidElimination productElimination independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType productEquality cumulativity instantiate unionElimination promote_hyp hypothesis_subsumption equalityIstype because_Cache dependent_set_memberEquality_alt applyLambdaEquality imageElimination baseApply closedConclusion baseClosed applyEquality intEquality sqequalBase dependent_pairEquality_alt spreadEquality productIsType universeEquality isectEquality inlFormation_alt inrFormation_alt unionIsType addEquality equalityElimination pointwiseFunctionality

Latex:
\mforall{}Gamma:j\mvdash{}.  \mforall{}sys:(phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}  \mtimes{}  \{Gamma,  phi  \mvdash{}  \_\})  List.
    (compatible-system\{i:l\}(Gamma;sys)
    {}\mRightarrow{}  (Gamma,  \mbackslash{}/(map(\mlambda{}p.(fst(p));sys))  \mvdash{}  system-type(sys)
          \mwedge{}  (\mforall{}i:\mBbbN{}||sys||.  (system-type(sys)  =  (snd(sys[i]))))))



Date html generated: 2020_05_20-PM-03_09_35
Last ObjectModification: 2020_04_07-AM-08_18_58

Theory : cubical!type!theory


Home Index