Nuprl Lemma : system-type-properties
∀Gamma:j⊢. ∀sys:(phi:{Gamma ⊢ _:𝔽} × {Gamma, phi ⊢ _}) List.
  (compatible-system{i:l}(Gamma;sys)
  
⇒ (Gamma, \/(map(λp.(fst(p));sys)) ⊢ system-type(sys)
     ∧ (∀i:ℕ||sys||. (system-type(sys) = (snd(sys[i])) ∈ {Gamma, fst(sys[i]) ⊢ _}))))
Proof
Definitions occuring in Statement : 
system-type: system-type(sys)
, 
compatible-system: compatible-system{i:l}(Gamma;sys)
, 
context-subset: Gamma, phi
, 
face-or-list: \/(L)
, 
face-type: 𝔽
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
select: L[n]
, 
length: ||as||
, 
map: map(f;as)
, 
list: T List
, 
int_seg: {i..j-}
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
product: x:A × B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
prop: ℙ
, 
or: P ∨ Q
, 
cons: [a / b]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
colength: colength(L)
, 
nil: []
, 
it: ⋅
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
squash: ↓T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
decidable: Dec(P)
, 
subtype_rel: A ⊆r B
, 
system-type: system-type(sys)
, 
face-or-list: \/(L)
, 
select: L[n]
, 
cand: A c∧ B
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
compatible-system: compatible-system{i:l}(Gamma;sys)
, 
iff: P 
⇐⇒ Q
, 
l_all: (∀x∈L.P[x])
, 
pi1: fst(t)
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
l_exists: (∃x∈L. P[x])
, 
cubical-type-at: A(a)
, 
face-type: 𝔽
, 
constant-cubical-type: (X)
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
face-presheaf: 𝔽
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
rev_implies: P 
⇐ Q
, 
respects-equality: respects-equality(S;T)
, 
same-cubical-type: Gamma ⊢ A = B
, 
compose: f o g
, 
face-term-iff: Gamma ⊢ (phi 
⇐⇒ psi)
, 
face-term-implies: Gamma ⊢ (phi 
⇒ psi)
, 
face-0: 0(𝔽)
, 
cubical-term-at: u(a)
, 
ext-eq: A ≡ B
, 
bool: 𝔹
, 
unit: Unit
, 
uiff: uiff(P;Q)
, 
pi2: snd(t)
, 
bnot: ¬bb
, 
assert: ↑b
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
cubical-term_wf, 
face-type_wf, 
cubical-type_wf, 
context-subset_wf, 
list-cases, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
istype-void, 
istype-le, 
subtract-1-ge-0, 
subtype_base_sq, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
decidable__equal_int, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
decidable__le, 
le_wf, 
istype-nat, 
list_wf, 
cubical_set_wf, 
reduce_nil_lemma, 
map_nil_lemma, 
length_of_nil_lemma, 
stuck-spread, 
istype-base, 
discrete-cubical-type_wf, 
top_wf, 
face-0_wf, 
int_seg_properties, 
int_seg_wf, 
compatible-system_wf, 
nil_wf, 
pairwise-cons, 
equal_wf, 
face-and_wf, 
subset-cubical-type, 
face-term-implies-subset, 
face-term-and-implies1, 
face-term-and-implies2, 
cons_wf, 
length_wf, 
pair-eta, 
select_wf, 
decidable__lt, 
context-subset-subtype-and2, 
context-subset-subtype, 
face-or-list_wf, 
map_wf, 
pi1_wf_top, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
lattice-meet_wf, 
lattice-join_wf, 
lattice-1_wf, 
I_cube_wf, 
fset_wf, 
nat_wf, 
face-or-list-eq-1, 
map-length, 
select-map, 
subtype_rel_list, 
face-and-eq-1, 
cubical-term-at_wf, 
subtype_rel_self, 
length-map, 
face-type-at, 
respects-equality_weakening, 
same-cubical-type-by-list-cases, 
map-map, 
reduce_cons_lemma, 
map_cons_lemma, 
face-lattice-0-not-1, 
face-term-iff_wf, 
face-or-eq-1, 
face-or_wf, 
context-subset_functionality, 
equal_functionality_wrt_subtype_rel2, 
length_of_cons_lemma, 
case-type_wf, 
le_int_wf, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
select-cons, 
case-type-same1, 
add-is-int-iff, 
false_wf, 
case-type-same2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :memTop, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
inhabitedIsType, 
productEquality, 
cumulativity, 
instantiate, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
equalityIstype, 
because_Cache, 
dependent_set_memberEquality_alt, 
applyLambdaEquality, 
imageElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
intEquality, 
sqequalBase, 
dependent_pairEquality_alt, 
spreadEquality, 
productIsType, 
universeEquality, 
isectEquality, 
inlFormation_alt, 
inrFormation_alt, 
unionIsType, 
addEquality, 
equalityElimination, 
pointwiseFunctionality
Latex:
\mforall{}Gamma:j\mvdash{}.  \mforall{}sys:(phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}  \mtimes{}  \{Gamma,  phi  \mvdash{}  \_\})  List.
    (compatible-system\{i:l\}(Gamma;sys)
    {}\mRightarrow{}  (Gamma,  \mbackslash{}/(map(\mlambda{}p.(fst(p));sys))  \mvdash{}  system-type(sys)
          \mwedge{}  (\mforall{}i:\mBbbN{}||sys||.  (system-type(sys)  =  (snd(sys[i]))))))
Date html generated:
2020_05_20-PM-03_09_35
Last ObjectModification:
2020_04_07-AM-08_18_58
Theory : cubical!type!theory
Home
Index