Nuprl Lemma : cubic_converge2_wf
∀a:ℕ+. ∀b:{a + 1...}. ∀k:{k:ℕ| (2 * a^3^k) ≤ b^3^k} . ∀m:ℕ.  (cubic_converge2(a;b;k;m) ∈ {n:ℕ| (a^3^n * m) ≤ b^3^n} )
Proof
Definitions occuring in Statement : 
cubic_converge2: cubic_converge2(a;b;k;m), 
exp: i^n, 
int_upper: {i...}, 
nat_plus: ℕ+, 
nat: ℕ, 
le: A ≤ B, 
all: ∀x:A. B[x], 
member: t ∈ T, 
set: {x:A| B[x]} , 
multiply: n * m, 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
guard: {T}, 
int_seg: {i..j-}, 
nat_plus: ℕ+, 
int_upper: {i...}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
subtype_rel: A ⊆r B, 
le: A ≤ B, 
less_than': less_than'(a;b), 
sq_stable: SqStable(P), 
squash: ↓T, 
cubic_converge2: cubic_converge2(a;b;k;m), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
less_than: a < b, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
has-value: (a)↓, 
exp: i^n, 
primrec: primrec(n;b;c), 
subtract: n - m, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
int_seg_wf, 
int_seg_properties, 
int_upper_properties, 
nat_plus_properties, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
decidable__equal_int, 
int_seg_subtype, 
false_wf, 
sq_stable__le, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
le_wf, 
le_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
decidable__lt, 
lelt_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
nat_wf, 
set_wf, 
exp_wf2, 
exp_wf4, 
int_upper_wf, 
nat_plus_wf, 
exp0_lemma, 
squash_wf, 
true_wf, 
exp1, 
iff_weakening_equal, 
int_subtype_base, 
subtype_rel_sets, 
multiply-is-int-iff, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
iroot-property, 
iroot_wf, 
value-type-has-value, 
int-value-type, 
add_nat_wf, 
exp-one, 
set_subtype_base, 
member-less_than, 
subtract-add-cancel, 
exp_preserves_lt, 
le_weakening2, 
exp_wf_nat_plus, 
not-lt-2, 
less-iff-le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
zero-add, 
le-add-cancel, 
set-value-type, 
exp_preserves_le, 
mul-non-neg1, 
zero-le-nat, 
int_upper_subtype_nat, 
exp-of-mul, 
exp_mul, 
exp_add, 
nat_plus_subtype_nat, 
le_functionality, 
multiply_functionality_wrt_le, 
le_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
addEquality, 
productElimination, 
unionElimination, 
applyEquality, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
multiplyEquality, 
equalityElimination, 
promote_hyp, 
instantiate, 
cumulativity, 
universeEquality, 
int_eqReduceFalseSq, 
setEquality, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
callbyvalueReduce, 
productEquality, 
minusEquality, 
sqequalIntensionalEquality, 
equalityUniverse, 
levelHypothesis
Latex:
\mforall{}a:\mBbbN{}\msupplus{}.  \mforall{}b:\{a  +  1...\}.  \mforall{}k:\{k:\mBbbN{}|  (2  *  a\^{}3\^{}k)  \mleq{}  b\^{}3\^{}k\}  .  \mforall{}m:\mBbbN{}.
    (cubic\_converge2(a;b;k;m)  \mmember{}  \{n:\mBbbN{}|  (a\^{}3\^{}n  *  m)  \mleq{}  b\^{}3\^{}n\}  )
Date html generated:
2017_10_04-PM-10_25_09
Last ObjectModification:
2017_07_28-AM-08_49_00
Theory : reals_2
Home
Index