Nuprl Lemma : implies-sg-win2

g:SimpleGame
  ((∃Good:Pos(g) ⟶ ℙ'
     ∃F:p:{p:Pos(g)| Good[p]}  ⟶ q:{q:Pos(g)| Legal1(p;q)}  ⟶ Pos(g)
      (Good[InitialPos(g)] ∧ (∀p:{p:Pos(g)| Good[p]} . ∀q:{q:Pos(g)| Legal1(p;q)} .  (Good[F[p;q]] ∧ Legal2(q;F[p;q]))))\000C)
   win2(g))


Proof




Definitions occuring in Statement :  win2: win2(g) sg-legal2: Legal2(x;y) sg-legal1: Legal1(x;y) sg-init: InitialPos(g) sg-pos: Pos(g) simple-game: SimpleGame prop: so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q exists: x:A. B[x] and: P ∧ Q win2: win2(g) uall: [x:A]. B[x] member: t ∈ T nat: false: False ge: i ≥  guard: {T} uimplies: supposing a prop: win2strat: win2strat(g;n) decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True so_lambda: λ2x.t[x] so_apply: x[s] so_apply: x[s1;s2] sq_type: SQType(T) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff squash: T play-item: moves[i] int_seg: {i..j-} lelt: i ≤ j < k play-truncate: play-truncate(f;m) play-len: ||moves|| cand: c∧ B nat_plus: + less_than: a < b sq_stable: SqStable(P) seq-item: s[i] pi2: snd(t)
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel nat_wf exists_wf sg-pos_wf subtype_rel_self sg-legal1_wf sg-init_wf all_wf sg-legal2_wf simple-game_wf eq_int_wf bool_wf equal-wf-base assert_wf bnot_wf not_wf int_subtype_base subtype_base_sq strat2play_wf not-le-2 le_wf equal-wf-T-base play-len_wf uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot equal_wf strat2play-invariant-1 le-add-cancel-alt decidable__lt not-lt-2 lelt_wf le-add-cancel2 subtract-add-cancel strat2play_subtype le_weakening2 seq-truncate-item seq-len-truncate squash_wf true_wf iff_weakening_equal add-is-int-iff mul-distributes mul-commutes seq-item_wf mul_bounds_1a seq-len_wf set_subtype_base multiply-is-int-iff mul-associates mul-distributes-right zero-mul not-equal-implies-less le_reflexive one-mul add-mul-special two-mul omega-shadow add_nat_wf multiply_nat_wf sq_stable__le play-item_wf minus-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin isect_memberFormation introduction cut extract_by_obid isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination sqequalRule lambdaEquality dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry unionElimination independent_pairFormation addEquality applyEquality isect_memberEquality voidEquality intEquality minusEquality because_Cache instantiate functionEquality cumulativity universeEquality setEquality productEquality baseClosed baseApply closedConclusion dependentIntersection_memberEquality dependent_set_memberEquality equalityElimination impliesFunctionality imageElimination imageMemberEquality addLevel hyp_replacement levelHypothesis applyLambdaEquality multiplyEquality dependent_pairFormation sqequalIntensionalEquality promote_hyp

Latex:
\mforall{}g:SimpleGame
    ((\mexists{}Good:Pos(g)  {}\mrightarrow{}  \mBbbP{}'
          \mexists{}F:p:\{p:Pos(g)|  Good[p]\}    {}\mrightarrow{}  q:\{q:Pos(g)|  Legal1(p;q)\}    {}\mrightarrow{}  Pos(g)
            (Good[InitialPos(g)]
            \mwedge{}  (\mforall{}p:\{p:Pos(g)|  Good[p]\}  .  \mforall{}q:\{q:Pos(g)|  Legal1(p;q)\}  .    (Good[F[p;q]]  \mwedge{}  Legal2(q;F[p;q])))))
    {}\mRightarrow{}  win2(g))



Date html generated: 2019_06_20-PM-00_54_03
Last ObjectModification: 2019_01_02-PM-01_32_21

Theory : co-recursion-2


Home Index