Nuprl Lemma : ctt-binder-context_wf

ctt-binder-context ∈ ?CubicalContext
⟶ (varname() List)
⟶ CttOp
⟶ very-dep-fun(?CubicalContext;varname() List × CttTerm;a,bt.[[a;snd(bt)]])


Proof




Definitions occuring in Statement :  ctt-binder-context: ctt-binder-context ctt_meaning: [[ctxt;t]] ctt-term: CttTerm ctt-op: CttOp cubical-context: ?CubicalContext varname: varname() very-dep-fun: very-dep-fun(A;B;a,b.C[a; b]) list: List pi2: snd(t) member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x]
Definitions unfolded in proof :  ctt-binder-context: ctt-binder-context member: t ∈ T select: L[n] uall: [x:A]. B[x] uimplies: supposing a all: x:A. B[x] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) and: P ∧ Q band: p ∧b q ifthenelse: if then else fi  pi1: fst(t) le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A nat: cand: c∧ B int_seg: {i..j-} lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] prop: sq_type: SQType(T) guard: {T} true: True subtype_rel: A ⊆B pi2: snd(t) or: P ∨ Q decidable: Dec(P) bfalse: ff bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q very-dep-fun: very-dep-fun(A;B;a,b.C[a; b]) ge: i ≥  vdf: vdf(A;B;a,b.C[a; b];n) lt_int: i <j subtract: m cons: [a b] less_than: a < b squash: T ctt-term: CttTerm wfterm: wfterm(opr;sort;arity) provisional-subterm-context: provisional-subterm-context{i:l}(X;f;vs;L) eq_int: (i =z j) bor: p ∨bq ctt-subterm-context: ctt-subterm-context{i:l}(ctxt;f;n;vs;m) ctt-opr-is: ctt-opr-is(f;s) eq_atom: =a y int_iseg: {i...j} bdd-all: bdd-all(n;i.P[i])
Lemmas referenced :  length_of_nil_lemma stuck-spread istype-base bdd_all_zero_lemma length_wf nat_wf ctt-arity_wf lt_int_wf eqtt_to_assert assert_of_lt_int varname_wf select_wf istype-false eq_int_wf assert_of_eq_int provisional-subterm-context_wf nil_wf cubical-context_wf list_wf ctt-term_wf ctt_meaning_wf pi2_wf int_seg_properties full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf istype-int int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf int_seg_wf subtype_base_sq int_subtype_base istype-less_than length_wf_nat pi1_wf_top set_subtype_base le_wf ctt-kind_wf istype-assert ctt-opr-is_wf decidable__lt intformnot_wf intformeq_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int iff_weakening_uiff assert_wf less_than_wf decidable__le istype-le nat_properties ge_wf list-cases product_subtype_list le_weakening2 length_of_cons_lemma non_neg_length itermAdd_wf int_term_value_add_lemma equal-wf-base subtract-1-ge-0 vdf-eq-implies subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtract-add-cancel bdd-all_wf bind-provision-cubical-context-equations assert-bdd-all equal_wf subtype_rel_self iff_weakening_equal subtype_rel_product top_wf vdf-eq_wf1 ctt-op_wf subtype_rel_list band_tt equal-wf-T-base band_ff bor_wf ctt-opr-is-implies bnot_wf not_wf istype-void primrec1_lemma firstn_wf length_firstn_eq select-firstn bool_cases band_wf btrue_wf bfalse_wf first0 uiff_transitivity iff_transitivity assert_of_bnot length_firstn assert_of_band bnot_thru_band assert_of_bor
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity functionExtensionality sqequalRule cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin baseClosed independent_isectElimination lambdaFormation_alt Error :memTop,  dependent_functionElimination closedConclusion natural_numberEquality productEquality hypothesisEquality because_Cache inhabitedIsType unionElimination equalityElimination productElimination lambdaEquality_alt independent_pairFormation setElimination rename equalityIstype equalityTransitivity equalitySymmetry independent_functionElimination dependent_set_memberEquality_alt instantiate cumulativity approximateComputation dependent_pairFormation_alt int_eqEquality universeIsType voidElimination intEquality sqequalBase productIsType applyEquality functionIsType unionIsType tokenEquality promote_hyp isect_memberEquality_alt intWeakElimination axiomEquality functionIsTypeImplies hypothesis_subsumption setEquality dependentIntersection_memberEquality independent_pairEquality imageElimination imageMemberEquality universeEquality unionEquality inlFormation_alt inrFormation_alt

Latex:
ctt-binder-context  \mmember{}  ?CubicalContext
{}\mrightarrow{}  (varname()  List)
{}\mrightarrow{}  CttOp
{}\mrightarrow{}  very-dep-fun(?CubicalContext;varname()  List  \mtimes{}  CttTerm;a,bt.[[a;snd(bt)]])



Date html generated: 2020_05_21-AM-10_38_24
Last ObjectModification: 2020_05_18-AM-11_26_18

Theory : cubical!type!theory


Home Index