Nuprl Lemma : bag-summation-from-upto
∀[a,b:ℤ]. ∀[f:{a..b-} ⟶ ℤ].  (Σ(i∈[a, b)). f[i] = Σ(f[j + a] | j < b - a) ∈ ℤ)
Proof
Definitions occuring in Statement : 
bag-summation: Σ(x∈b). f[x], 
from-upto: [n, m), 
sum: Σ(f[x] | x < k), 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
subtract: n - m, 
add: n + m, 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
nil: [], 
list_accum: list_accum, 
bag-accum: bag-accum(v,x.f[v; x];init;bs), 
bag-summation: Σ(x∈b). f[x], 
squash: ↓T, 
true: True, 
less_than': less_than'(a;b), 
less_than: a < b, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
assert: ↑b, 
bnot: ¬bb, 
guard: {T}, 
sq_type: SQType(T), 
or: P ∨ Q, 
subtype_rel: A ⊆r B, 
bfalse: ff, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
from-upto: [n, m), 
sum_aux: sum_aux(k;v;i;x.f[x]), 
sum: Σ(f[x] | x < k), 
decidable: Dec(P), 
nat_plus: ℕ+, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
subtract: n - m, 
bag-append: as + bs, 
cand: A c∧ B, 
monoid_p: IsMonoid(T;op;id), 
assoc: Assoc(T;op), 
infix_ap: x f y, 
ident: Ident(T;op;id), 
comm: Comm(T;op), 
le: A ≤ B, 
bag-map: bag-map(f;bs), 
has-value: (a)↓, 
single-bag: {x}, 
cons: [a / b], 
empty-bag: {}
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
int_seg_wf, 
subtract_wf, 
subtract-1-ge-0, 
istype-nat, 
istype-top, 
less_than_wf, 
assert_wf, 
iff_weakening_uiff, 
assert-bnot, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases_sqequal, 
int_subtype_base, 
eqff_to_assert, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
assert_of_lt_int, 
eqtt_to_assert, 
lt_int_wf, 
decidable__lt, 
sum_split1, 
intformnot_wf, 
int_formula_prop_not_lemma, 
add-member-int_seg2, 
decidable__le, 
istype-le, 
general_arith_equation2, 
itermAdd_wf, 
int_term_value_add_lemma, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
int_seg_properties, 
add-member-int_seg1, 
zero-add, 
add-commutes, 
add-swap, 
add-associates, 
le_wf, 
sum_wf, 
from-upto-split, 
bag-summation-append, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
from-upto_wf, 
list-subtype-bag, 
subtype_rel_sets_simple, 
lelt_wf, 
istype-false, 
not-lt-2, 
less-iff-le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
minus-one-mul-top, 
add_functionality_wrt_le, 
le-add-cancel2, 
not-le-2, 
minus-minus, 
le-add-cancel, 
subtype_rel_self, 
iff_weakening_equal, 
bag-summation_wf, 
from-upto-shift, 
subtract-add-cancel, 
top_wf, 
subtype_rel_list, 
bag-summation-map, 
subtype_rel_sets, 
add-subtract-cancel, 
bag_wf, 
comm_wf, 
assoc_wf, 
value-type-has-value, 
int-value-type, 
list_wf, 
list_subtype_base, 
cons_wf, 
nil_wf, 
bag-summation-single, 
bag-summation-empty, 
satisfiable-full-omega-tt
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
functionIsTypeImplies, 
isect_memberFormation_alt, 
functionIsType, 
because_Cache, 
equalityIsType1, 
imageElimination, 
imageMemberEquality, 
axiomSqEquality, 
lessCases, 
cumulativity, 
instantiate, 
promote_hyp, 
applyEquality, 
baseClosed, 
closedConclusion, 
baseApply, 
equalityIsType2, 
sqleReflexivity, 
callbyvalueReduce, 
productElimination, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
unionElimination, 
intEquality, 
dependent_set_memberEquality_alt, 
productIsType, 
addEquality, 
independent_pairEquality, 
universeEquality, 
setEquality, 
productEquality, 
minusEquality, 
setIsType, 
equalityIstype, 
isect_memberFormation, 
functionEquality, 
isect_memberEquality, 
dependent_set_memberEquality, 
dependent_pairFormation, 
lambdaEquality, 
voidEquality, 
computeAll, 
functionExtensionality, 
lambdaFormation
Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[f:\{a..b\msupminus{}\}  {}\mrightarrow{}  \mBbbZ{}].    (\mSigma{}(i\mmember{}[a,  b)).  f[i]  =  \mSigma{}(f[j  +  a]  |  j  <  b  -  a))
Date html generated:
2019_10_15-AM-11_03_47
Last ObjectModification:
2018_11_27-AM-00_30_14
Theory : bags
Home
Index