Nuprl Lemma : bag-summation-from-upto

[a,b:ℤ]. ∀[f:{a..b-} ⟶ ℤ].  (i∈[a, b)). f[i] = Σ(f[j a] j < a) ∈ ℤ)


Proof




Definitions occuring in Statement :  bag-summation: Σ(x∈b). f[x] from-upto: [n, m) sum: Σ(f[x] x < k) int_seg: {i..j-} uall: [x:A]. B[x] so_apply: x[s] lambda: λx.A[x] function: x:A ⟶ B[x] subtract: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: nil: [] list_accum: list_accum bag-accum: bag-accum(v,x.f[v; x];init;bs) bag-summation: Σ(x∈b). f[x] squash: T true: True less_than': less_than'(a;b) less_than: a < b iff: ⇐⇒ Q rev_implies:  Q assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) or: P ∨ Q subtype_rel: A ⊆B bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 from-upto: [n, m) sum_aux: sum_aux(k;v;i;x.f[x]) sum: Σ(f[x] x < k) decidable: Dec(P) nat_plus: + so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k subtract: m bag-append: as bs cand: c∧ B monoid_p: IsMonoid(T;op;id) assoc: Assoc(T;op) infix_ap: y ident: Ident(T;op;id) comm: Comm(T;op) le: A ≤ B bag-map: bag-map(f;bs) has-value: (a)↓ single-bag: {x} cons: [a b] empty-bag: {}
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than int_seg_wf subtract_wf subtract-1-ge-0 istype-nat istype-top less_than_wf assert_wf iff_weakening_uiff assert-bnot bool_subtype_base bool_wf subtype_base_sq bool_cases_sqequal int_subtype_base eqff_to_assert int_term_value_subtract_lemma itermSubtract_wf assert_of_lt_int eqtt_to_assert lt_int_wf decidable__lt sum_split1 intformnot_wf int_formula_prop_not_lemma add-member-int_seg2 decidable__le istype-le general_arith_equation2 itermAdd_wf int_term_value_add_lemma decidable__equal_int intformeq_wf int_formula_prop_eq_lemma int_seg_properties add-member-int_seg1 zero-add add-commutes add-swap add-associates le_wf sum_wf from-upto-split bag-summation-append equal_wf squash_wf true_wf istype-universe from-upto_wf list-subtype-bag subtype_rel_sets_simple lelt_wf istype-false not-lt-2 less-iff-le condition-implies-le minus-add minus-one-mul minus-one-mul-top add_functionality_wrt_le le-add-cancel2 not-le-2 minus-minus le-add-cancel subtype_rel_self iff_weakening_equal bag-summation_wf from-upto-shift subtract-add-cancel top_wf subtype_rel_list bag-summation-map subtype_rel_sets add-subtract-cancel bag_wf comm_wf assoc_wf value-type-has-value int-value-type list_wf list_subtype_base cons_wf nil_wf bag-summation-single bag-summation-empty satisfiable-full-omega-tt
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType axiomEquality isectIsTypeImplies inhabitedIsType functionIsTypeImplies isect_memberFormation_alt functionIsType because_Cache equalityIsType1 imageElimination imageMemberEquality axiomSqEquality lessCases cumulativity instantiate promote_hyp applyEquality baseClosed closedConclusion baseApply equalityIsType2 sqleReflexivity callbyvalueReduce productElimination equalitySymmetry equalityTransitivity equalityElimination unionElimination intEquality dependent_set_memberEquality_alt productIsType addEquality independent_pairEquality universeEquality setEquality productEquality minusEquality setIsType equalityIstype isect_memberFormation functionEquality isect_memberEquality dependent_set_memberEquality dependent_pairFormation lambdaEquality voidEquality computeAll functionExtensionality lambdaFormation

Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[f:\{a..b\msupminus{}\}  {}\mrightarrow{}  \mBbbZ{}].    (\mSigma{}(i\mmember{}[a,  b)).  f[i]  =  \mSigma{}(f[j  +  a]  |  j  <  b  -  a))



Date html generated: 2019_10_15-AM-11_03_47
Last ObjectModification: 2018_11_27-AM-00_30_14

Theory : bags


Home Index