Nuprl Lemma : separable-translation-group_iff

rv:InnerProductSpace. ∀e:{e:Point(rv)| e^2 r1} . ∀T:ℝ ⟶ Point(rv) ⟶ Point(rv).
  (translation-group-fun(rv;e;T)
   (separable-translation-group(rv;e;T)
     ⇐⇒ (∀a:ℝ. ∀h:{h:Point(rv)| h ⋅ r0} .  (a ≠ r0  (r0 < ||T_a(h) h||)))
         ∧ (∀a,b:ℝ. ∀h:{h:Point(rv)| h ⋅ r0} .
              (a ≠ r0  b ≠ r0  ((||T_a(h) h||/||T_b(h) h||) (||T_a(0)||/||T_b(0)||))))))


Proof




Definitions occuring in Statement :  separable-translation-group: separable-translation-group(rv;e;T) trans-apply: T_t(x) translation-group-fun: translation-group-fun(rv;e;T) rv-norm: ||x|| rv-sub: y rv-ip: x ⋅ y inner-product-space: InnerProductSpace rv-0: 0 rdiv: (x/y) rneq: x ≠ y rless: x < y req: y int-to-real: r(n) real: all: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] prop: rev_implies:  Q subtype_rel: A ⊆B uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q separable-translation-group: separable-translation-group(rv;e;T) sq_stable: SqStable(P) squash: T exists: x:A. B[x] uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rv-sub: y rv-minus: -x req_int_terms: t1 ≡ t2 top: Top nat: le: A ≤ B less_than': less_than'(a;b) not: ¬A false: False cand: c∧ B rdiv: (x/y) separable-kernel: separable-kernel(rv;e;f) less_than: a < b true: True stable: Stable{P}
Lemmas referenced :  separable-translation-group_wf req_wf rv-ip_wf int-to-real_wf rneq_wf rless_wf rv-norm_wf rv-sub_wf inner-product-space_subtype trans-apply_wf rdiv_wf translation-group-fun_wf real_wf Error :ss-point_wf,  real-vector-space_subtype1 subtype_rel_transitivity inner-product-space_wf real-vector-space_wf Error :separation-space_wf,  separable-kernel-iff trans-kernel_wf trans-kernel-is-kernel-fun sq_stable__req rv-add_wf rv-mul_wf rmul_wf rabs_wf Error :ss-eq_wf,  radd_wf itermSubtract_wf itermAdd_wf itermConstant_wf rv-0_wf req_functionality rv-norm_functionality rv-sub_functionality trans-kernel-equation Error :ss-eq_weakening,  req_weakening uiff_transitivity Error :ss-eq_functionality,  rv-add_functionality rv-add-comm rv-mul-1-add-alt rv-mul_functionality rv-mul0 rv-0-add req-iff-rsub-is-0 real_polynomial_null istype-int real_term_value_sub_lemma istype-void real_term_value_add_lemma real_term_value_const_lemma Error :ss-eq_transitivity,  req_transitivity rv-norm-mul rmul_functionality rabs-rmul rnexp_wf istype-le rleq-int istype-false itermMultiply_wf itermVar_wf rabs-of-nonneg rleq_weakening_rless rv-norm-eq-iff rnexp-one real_term_value_mul_lemma real_term_value_var_lemma rmul-is-positive rless_functionality rabs-positive-iff rneq_functionality req_inversion sq_stable__rless rv-0ip rv-mul-0 rmul_preserves_req rinv_wf2 rmul-rinv rless-int stable_req false_wf not_wf minimal-double-negation-hyp-elim minimal-not-not-excluded-middle rdiv_functionality Error :ss-eq_inversion,  rmul-rinv3 rinv-mul-as-rdiv rleq_wf stable__rleq not-rless trans-kernel-increasing rless_transitivity1 rless_irreflexivity trans-kernel-0 rleq_antisymmetry rleq_weakening_equal rleq_functionality trans-kernel_functionality rminus_wf rabs-of-nonpos req-implies-req rsub_wf itermMinus_wf real_term_value_minus_lemma squash_wf true_wf rminus-int subtype_rel_self iff_weakening_equal not-rneq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename because_Cache hypothesis sqequalRule productIsType functionIsType setIsType natural_numberEquality applyEquality dependent_functionElimination lambdaEquality_alt inhabitedIsType equalityTransitivity equalitySymmetry independent_isectElimination inrFormation_alt instantiate independent_functionElimination productElimination imageMemberEquality baseClosed imageElimination minusEquality equalityIstype approximateComputation isect_memberEquality_alt voidElimination dependent_set_memberEquality_alt int_eqEquality inlFormation_alt unionElimination dependent_pairFormation_alt closedConclusion unionEquality functionEquality unionIsType universeEquality

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}e:\{e:Point(rv)|  e\^{}2  =  r1\}  .  \mforall{}T:\mBbbR{}  {}\mrightarrow{}  Point(rv)  {}\mrightarrow{}  Point(rv).
    (translation-group-fun(rv;e;T)
    {}\mRightarrow{}  (separable-translation-group(rv;e;T)
          \mLeftarrow{}{}\mRightarrow{}  (\mforall{}a:\mBbbR{}.  \mforall{}h:\{h:Point(rv)|  h  \mcdot{}  e  =  r0\}  .    (a  \mneq{}  r0  {}\mRightarrow{}  (r0  <  ||T\_a(h)  -  h||)))
                  \mwedge{}  (\mforall{}a,b:\mBbbR{}.  \mforall{}h:\{h:Point(rv)|  h  \mcdot{}  e  =  r0\}  .
                            (a  \mneq{}  r0  {}\mRightarrow{}  b  \mneq{}  r0  {}\mRightarrow{}  ((||T\_a(h)  -  h||/||T\_b(h)  -  h||)  =  (||T\_a(0)||/||T\_b(0)||))))))



Date html generated: 2020_05_20-PM-01_17_56
Last ObjectModification: 2019_12_09-PM-11_24_03

Theory : inner!product!spaces


Home Index