Nuprl Lemma : separable-translation-group_iff
∀rv:InnerProductSpace. ∀e:{e:Point(rv)| e^2 = r1} . ∀T:ℝ ⟶ Point(rv) ⟶ Point(rv).
  (translation-group-fun(rv;e;T)
  
⇒ (separable-translation-group(rv;e;T)
     
⇐⇒ (∀a:ℝ. ∀h:{h:Point(rv)| h ⋅ e = r0} .  (a ≠ r0 
⇒ (r0 < ||T_a(h) - h||)))
         ∧ (∀a,b:ℝ. ∀h:{h:Point(rv)| h ⋅ e = r0} .
              (a ≠ r0 
⇒ b ≠ r0 
⇒ ((||T_a(h) - h||/||T_b(h) - h||) = (||T_a(0)||/||T_b(0)||))))))
Proof
Definitions occuring in Statement : 
separable-translation-group: separable-translation-group(rv;e;T)
, 
trans-apply: T_t(x)
, 
translation-group-fun: translation-group-fun(rv;e;T)
, 
rv-norm: ||x||
, 
rv-sub: x - y
, 
rv-ip: x ⋅ y
, 
inner-product-space: InnerProductSpace
, 
rv-0: 0
, 
rdiv: (x/y)
, 
rneq: x ≠ y
, 
rless: x < y
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
separable-translation-group: separable-translation-group(rv;e;T)
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rv-sub: x - y
, 
rv-minus: -x
, 
req_int_terms: t1 ≡ t2
, 
top: Top
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
false: False
, 
cand: A c∧ B
, 
rdiv: (x/y)
, 
separable-kernel: separable-kernel(rv;e;f)
, 
less_than: a < b
, 
true: True
, 
stable: Stable{P}
Lemmas referenced : 
separable-translation-group_wf, 
req_wf, 
rv-ip_wf, 
int-to-real_wf, 
rneq_wf, 
rless_wf, 
rv-norm_wf, 
rv-sub_wf, 
inner-product-space_subtype, 
trans-apply_wf, 
rdiv_wf, 
translation-group-fun_wf, 
real_wf, 
Error :ss-point_wf, 
real-vector-space_subtype1, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
Error :separation-space_wf, 
separable-kernel-iff, 
trans-kernel_wf, 
trans-kernel-is-kernel-fun, 
sq_stable__req, 
rv-add_wf, 
rv-mul_wf, 
rmul_wf, 
rabs_wf, 
Error :ss-eq_wf, 
radd_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermConstant_wf, 
rv-0_wf, 
req_functionality, 
rv-norm_functionality, 
rv-sub_functionality, 
trans-kernel-equation, 
Error :ss-eq_weakening, 
req_weakening, 
uiff_transitivity, 
Error :ss-eq_functionality, 
rv-add_functionality, 
rv-add-comm, 
rv-mul-1-add-alt, 
rv-mul_functionality, 
rv-mul0, 
rv-0-add, 
req-iff-rsub-is-0, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_add_lemma, 
real_term_value_const_lemma, 
Error :ss-eq_transitivity, 
req_transitivity, 
rv-norm-mul, 
rmul_functionality, 
rabs-rmul, 
rnexp_wf, 
istype-le, 
rleq-int, 
istype-false, 
itermMultiply_wf, 
itermVar_wf, 
rabs-of-nonneg, 
rleq_weakening_rless, 
rv-norm-eq-iff, 
rnexp-one, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
rmul-is-positive, 
rless_functionality, 
rabs-positive-iff, 
rneq_functionality, 
req_inversion, 
sq_stable__rless, 
rv-0ip, 
rv-mul-0, 
rmul_preserves_req, 
rinv_wf2, 
rmul-rinv, 
rless-int, 
stable_req, 
false_wf, 
not_wf, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
rdiv_functionality, 
Error :ss-eq_inversion, 
rmul-rinv3, 
rinv-mul-as-rdiv, 
rleq_wf, 
stable__rleq, 
not-rless, 
trans-kernel-increasing, 
rless_transitivity1, 
rless_irreflexivity, 
trans-kernel-0, 
rleq_antisymmetry, 
rleq_weakening_equal, 
rleq_functionality, 
trans-kernel_functionality, 
rminus_wf, 
rabs-of-nonpos, 
req-implies-req, 
rsub_wf, 
itermMinus_wf, 
real_term_value_minus_lemma, 
squash_wf, 
true_wf, 
rminus-int, 
subtype_rel_self, 
iff_weakening_equal, 
not-rneq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
independent_pairFormation, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
sqequalRule, 
productIsType, 
functionIsType, 
setIsType, 
natural_numberEquality, 
applyEquality, 
dependent_functionElimination, 
lambdaEquality_alt, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
inrFormation_alt, 
instantiate, 
independent_functionElimination, 
productElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
minusEquality, 
equalityIstype, 
approximateComputation, 
isect_memberEquality_alt, 
voidElimination, 
dependent_set_memberEquality_alt, 
int_eqEquality, 
inlFormation_alt, 
unionElimination, 
dependent_pairFormation_alt, 
closedConclusion, 
unionEquality, 
functionEquality, 
unionIsType, 
universeEquality
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}e:\{e:Point(rv)|  e\^{}2  =  r1\}  .  \mforall{}T:\mBbbR{}  {}\mrightarrow{}  Point(rv)  {}\mrightarrow{}  Point(rv).
    (translation-group-fun(rv;e;T)
    {}\mRightarrow{}  (separable-translation-group(rv;e;T)
          \mLeftarrow{}{}\mRightarrow{}  (\mforall{}a:\mBbbR{}.  \mforall{}h:\{h:Point(rv)|  h  \mcdot{}  e  =  r0\}  .    (a  \mneq{}  r0  {}\mRightarrow{}  (r0  <  ||T\_a(h)  -  h||)))
                  \mwedge{}  (\mforall{}a,b:\mBbbR{}.  \mforall{}h:\{h:Point(rv)|  h  \mcdot{}  e  =  r0\}  .
                            (a  \mneq{}  r0  {}\mRightarrow{}  b  \mneq{}  r0  {}\mRightarrow{}  ((||T\_a(h)  -  h||/||T\_b(h)  -  h||)  =  (||T\_a(0)||/||T\_b(0)||))))))
Date html generated:
2020_05_20-PM-01_17_56
Last ObjectModification:
2019_12_09-PM-11_24_03
Theory : inner!product!spaces
Home
Index