Nuprl Lemma : derivative-mul-part1

I:Interval
  (True
   (∀f1,f2,g1,g2:I ⟶ℝ.
        (f1(x) (proper)continuous for x ∈ I
         f2(x) (proper)continuous for x ∈ I
         g2(x) (proper)continuous for x ∈ I
         d(f1[x])/dx = λx.g1[x] on I
         d(f2[x])/dx = λx.g2[x] on I
         d(f1[x] f2[x])/dx = λx.(f1[x] g2[x]) (f2[x] g1[x]) on I)))


Proof




Definitions occuring in Statement :  derivative: d(f[x])/dx = λz.g[z] on I proper-continuous: f[x] (proper)continuous for x ∈ I r-ap: f(x) rfun: I ⟶ℝ interval: Interval rmul: b radd: b so_apply: x[s] all: x:A. B[x] implies:  Q true: True
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q derivative: d(f[x])/dx = λz.g[z] on I member: t ∈ T nat_plus: + uall: [x:A]. B[x] prop: so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] label: ...$L... t rfun: I ⟶ℝ uimplies: supposing a sq_stable: SqStable(P) squash: T guard: {T} exists: x:A. B[x] subinterval: I ⊆  rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) cand: c∧ B top: Top not: ¬A false: False satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) subtype_rel: A ⊆B rge: x ≥ y less_than: a < b less_than': less_than'(a;b) true: True sq_exists: x:{A| B[x]} proper-continuous: f[x] (proper)continuous for x ∈ I rneq: x ≠ y iff: ⇐⇒ Q rev_implies:  Q rless: x < y itermConstant: "const" req_int_terms: t1 ≡ t2 r-ap: f(x) rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B nequal: a ≠ b ∈  rdiv: (x/y) sq_type: SQType(T) real:
Lemmas referenced :  i-approx-is-subinterval less_than_wf set_wf nat_plus_wf icompact_wf i-approx_wf iproper_wf derivative_wf i-member_wf real_wf proper-continuous_wf r-ap_wf sq_stable__i-member rfun_wf true_wf interval_wf sq_stable__and sq_stable__icompact sq_stable__iproper rabs_wf rleq_wf uall_wf Inorm_wf Inorm-bound proper-continuous-implies rmax_functionality rmax-int req_inversion req_transitivity req_weakening rleq_functionality rmax_ub rmax_wf int-to-real_wf all_wf equal_wf int_formula_prop_wf int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformeq_wf itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_plus_properties imax_nat_plus r-bound_wf imax_wf rleq_weakening_equal rleq_functionality_wrt_implies r-bound-property mul_nat_plus rmin_wf rsub_wf rless_wf rmul_wf radd_wf rdiv_wf rless-int rmin_strict_ub rminus_wf uimplies_transitivity rleq_transitivity r-triangle-inequality radd_functionality_wrt_rleq rleq_weakening radd_functionality rabs-rmul rmul_functionality rabs_functionality real_term_polynomial itermSubtract_wf itermMultiply_wf itermAdd_wf itermMinus_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_add_lemma real_term_value_minus_lemma req-iff-rsub-is-0 rmin-rleq rmin_lb multiply_nat_plus int_term_value_mul_lemma rmul_preserves_rleq2 zero-rleq-rabs less_than'_wf rinv_wf2 rneq_functionality rmul-int rneq-int int_entire_a equal-wf-base int_subtype_base equal-wf-T-base rinv_functionality2 rinv-of-rmul rinv-mul-as-rdiv rdiv_functionality mul_bounds_1b rleq_weakening_rless subtype_base_sq int_term_value_add_lemma rmul-rinv rmul-rinv3 rmul_preserves_rleq radd-preserves-rleq rmul_functionality_wrt_rleq2 rmul-nonneg-case1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality dependent_set_memberEquality setElimination rename hypothesis isectElimination natural_numberEquality sqequalRule lambdaEquality productEquality applyEquality setEquality because_Cache independent_isectElimination independent_functionElimination imageMemberEquality baseClosed imageElimination isect_memberEquality equalitySymmetry equalityTransitivity dependent_pairFormation productElimination computeAll independent_pairFormation voidEquality voidElimination intEquality int_eqEquality unionElimination applyLambdaEquality inrFormation inlFormation dependent_set_memberFormation functionEquality multiplyEquality isect_memberFormation independent_pairEquality minusEquality axiomEquality baseApply closedConclusion promote_hyp instantiate cumulativity

Latex:
\mforall{}I:Interval
    (True
    {}\mRightarrow{}  (\mforall{}f1,f2,g1,g2:I  {}\mrightarrow{}\mBbbR{}.
                (f1(x)  (proper)continuous  for  x  \mmember{}  I
                {}\mRightarrow{}  f2(x)  (proper)continuous  for  x  \mmember{}  I
                {}\mRightarrow{}  g2(x)  (proper)continuous  for  x  \mmember{}  I
                {}\mRightarrow{}  d(f1[x])/dx  =  \mlambda{}x.g1[x]  on  I
                {}\mRightarrow{}  d(f2[x])/dx  =  \mlambda{}x.g2[x]  on  I
                {}\mRightarrow{}  d(f1[x]  *  f2[x])/dx  =  \mlambda{}x.(f1[x]  *  g2[x])  +  (f2[x]  *  g1[x])  on  I)))



Date html generated: 2017_10_03-PM-00_10_29
Last ObjectModification: 2017_07_28-AM-08_34_50

Theory : reals


Home Index