Nuprl Lemma : derivative-mul-part1
∀I:Interval
  (True
  
⇒ (∀f1,f2,g1,g2:I ⟶ℝ.
        (f1(x) (proper)continuous for x ∈ I
        
⇒ f2(x) (proper)continuous for x ∈ I
        
⇒ g2(x) (proper)continuous for x ∈ I
        
⇒ d(f1[x])/dx = λx.g1[x] on I
        
⇒ d(f2[x])/dx = λx.g2[x] on I
        
⇒ d(f1[x] * f2[x])/dx = λx.(f1[x] * g2[x]) + (f2[x] * g1[x]) on I)))
Proof
Definitions occuring in Statement : 
derivative: d(f[x])/dx = λz.g[z] on I
, 
proper-continuous: f[x] (proper)continuous for x ∈ I
, 
r-ap: f(x)
, 
rfun: I ⟶ℝ
, 
interval: Interval
, 
rmul: a * b
, 
radd: a + b
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
true: True
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
derivative: d(f[x])/dx = λz.g[z] on I
, 
member: t ∈ T
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
label: ...$L... t
, 
rfun: I ⟶ℝ
, 
uimplies: b supposing a
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
guard: {T}
, 
exists: ∃x:A. B[x]
, 
subinterval: I ⊆ J 
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uiff: uiff(P;Q)
, 
cand: A c∧ B
, 
top: Top
, 
not: ¬A
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
subtype_rel: A ⊆r B
, 
rge: x ≥ y
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
true: True
, 
sq_exists: ∃x:{A| B[x]}
, 
proper-continuous: f[x] (proper)continuous for x ∈ I
, 
rneq: x ≠ y
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rless: x < y
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
r-ap: f(x)
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
nequal: a ≠ b ∈ T 
, 
rdiv: (x/y)
, 
sq_type: SQType(T)
, 
real: ℝ
Lemmas referenced : 
i-approx-is-subinterval, 
less_than_wf, 
set_wf, 
nat_plus_wf, 
icompact_wf, 
i-approx_wf, 
iproper_wf, 
derivative_wf, 
i-member_wf, 
real_wf, 
proper-continuous_wf, 
r-ap_wf, 
sq_stable__i-member, 
rfun_wf, 
true_wf, 
interval_wf, 
sq_stable__and, 
sq_stable__icompact, 
sq_stable__iproper, 
rabs_wf, 
rleq_wf, 
uall_wf, 
Inorm_wf, 
Inorm-bound, 
proper-continuous-implies, 
rmax_functionality, 
rmax-int, 
req_inversion, 
req_transitivity, 
req_weakening, 
rleq_functionality, 
rmax_ub, 
rmax_wf, 
int-to-real_wf, 
all_wf, 
equal_wf, 
int_formula_prop_wf, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
nat_plus_properties, 
imax_nat_plus, 
r-bound_wf, 
imax_wf, 
rleq_weakening_equal, 
rleq_functionality_wrt_implies, 
r-bound-property, 
mul_nat_plus, 
rmin_wf, 
rsub_wf, 
rless_wf, 
rmul_wf, 
radd_wf, 
rdiv_wf, 
rless-int, 
rmin_strict_ub, 
rminus_wf, 
uimplies_transitivity, 
rleq_transitivity, 
r-triangle-inequality, 
radd_functionality_wrt_rleq, 
rleq_weakening, 
radd_functionality, 
rabs-rmul, 
rmul_functionality, 
rabs_functionality, 
real_term_polynomial, 
itermSubtract_wf, 
itermMultiply_wf, 
itermAdd_wf, 
itermMinus_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_add_lemma, 
real_term_value_minus_lemma, 
req-iff-rsub-is-0, 
rmin-rleq, 
rmin_lb, 
multiply_nat_plus, 
int_term_value_mul_lemma, 
rmul_preserves_rleq2, 
zero-rleq-rabs, 
less_than'_wf, 
rinv_wf2, 
rneq_functionality, 
rmul-int, 
rneq-int, 
int_entire_a, 
equal-wf-base, 
int_subtype_base, 
equal-wf-T-base, 
rinv_functionality2, 
rinv-of-rmul, 
rinv-mul-as-rdiv, 
rdiv_functionality, 
mul_bounds_1b, 
rleq_weakening_rless, 
subtype_base_sq, 
int_term_value_add_lemma, 
rmul-rinv, 
rmul-rinv3, 
rmul_preserves_rleq, 
radd-preserves-rleq, 
rmul_functionality_wrt_rleq2, 
rmul-nonneg-case1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
dependent_set_memberEquality, 
setElimination, 
rename, 
hypothesis, 
isectElimination, 
natural_numberEquality, 
sqequalRule, 
lambdaEquality, 
productEquality, 
applyEquality, 
setEquality, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
dependent_pairFormation, 
productElimination, 
computeAll, 
independent_pairFormation, 
voidEquality, 
voidElimination, 
intEquality, 
int_eqEquality, 
unionElimination, 
applyLambdaEquality, 
inrFormation, 
inlFormation, 
dependent_set_memberFormation, 
functionEquality, 
multiplyEquality, 
isect_memberFormation, 
independent_pairEquality, 
minusEquality, 
axiomEquality, 
baseApply, 
closedConclusion, 
promote_hyp, 
instantiate, 
cumulativity
Latex:
\mforall{}I:Interval
    (True
    {}\mRightarrow{}  (\mforall{}f1,f2,g1,g2:I  {}\mrightarrow{}\mBbbR{}.
                (f1(x)  (proper)continuous  for  x  \mmember{}  I
                {}\mRightarrow{}  f2(x)  (proper)continuous  for  x  \mmember{}  I
                {}\mRightarrow{}  g2(x)  (proper)continuous  for  x  \mmember{}  I
                {}\mRightarrow{}  d(f1[x])/dx  =  \mlambda{}x.g1[x]  on  I
                {}\mRightarrow{}  d(f2[x])/dx  =  \mlambda{}x.g2[x]  on  I
                {}\mRightarrow{}  d(f1[x]  *  f2[x])/dx  =  \mlambda{}x.(f1[x]  *  g2[x])  +  (f2[x]  *  g1[x])  on  I)))
Date html generated:
2017_10_03-PM-00_10_29
Last ObjectModification:
2017_07_28-AM-08_34_50
Theory : reals
Home
Index