Nuprl Lemma : alt-bar-sep-wkl!
∀[T:Type]
  ((∃size:ℕ. T ~ ℕsize)
  ⇒ BarSep(T;T)
  ⇒ (∀A:{A:n:ℕ ⟶ (ℕn ⟶ T) ⟶ 𝔹| Tree(A) ∧ Unbounded(A)} . (¬bar(¬(A))))
  ⇒ WKL!(T))
Proof
Definitions occuring in Statement : 
alt-wkl!: WKL!(T), 
altneg: ¬(A), 
altbarsep: BarSep(T;S), 
alttree: Tree(A), 
altunbounded: Unbounded(A), 
altbar: bar(X), 
equipollent: A ~ B, 
int_seg: {i..j-}, 
nat: ℕ, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
and: P ∧ Q, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
altbar: bar(X), 
altpath: IsPath(A;f), 
sq_exists: ∃x:A [B[x]], 
pi1: fst(t), 
nat_plus: ℕ+, 
rev_uimplies: rev_uimplies(P;Q), 
altneg: ¬(A), 
seq+: s.t, 
bnot: ¬bb, 
uiff: uiff(P;Q), 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
seq-append: seq-append(n;s;s'), 
alt-one-path: AtMostOnePath(A), 
altjbar: jbar(X;Y), 
altbarsep: BarSep(T;S), 
rev_implies: P ⇐ Q, 
cand: A c∧ B, 
select: L[n], 
l_member: (x ∈ l), 
true: True, 
inject: Inj(A;B;f), 
bfalse: ff, 
cons: [a / b], 
btrue: tt, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
finite-type: finite-type(T), 
iff: P ⇐⇒ Q, 
surject: Surj(A;B;f), 
biject: Bij(A;B;f), 
altunbounded: Unbounded(A), 
equipollent: A ~ B, 
sq_type: SQType(T), 
so_apply: x[s], 
guard: {T}, 
sq_stable: SqStable(P), 
less_than': less_than'(a;b), 
subtype_rel: A ⊆r B, 
top: Top, 
false: False, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
uimplies: b supposing a, 
or: P ∨ Q, 
decidable: Dec(P), 
exists: ∃x:A. B[x], 
ge: i ≥ j , 
squash: ↓T, 
less_than: a < b, 
le: A ≤ B, 
and: P ∧ Q, 
lelt: i ≤ j < k, 
int_seg: {i..j-}, 
nat: ℕ, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
alttree: Tree(A), 
member: t ∈ T, 
all: ∀x:A. B[x], 
alt-wkl!: WKL!(T), 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
iff_weakening_equal, 
true_wf, 
squash_wf, 
primrec-wf2, 
not_assert_elim, 
assert_elim, 
decidable__equal_function, 
altpath_wf, 
lelt_wf, 
set_subtype_base, 
subtract-1-ge-0, 
ge_wf, 
false_wf, 
add-is-int-iff, 
nat_plus_properties, 
length_wf_nat, 
add_nat_wf, 
add_nat_plus, 
bnot_wf, 
assert_of_bnot, 
int_seg_subtype_nat, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
less_than_wf, 
iff_weakening_uiff, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_lt_int, 
eqtt_to_assert, 
lt_int_wf, 
cons_member, 
subtype_rel_sets_simple, 
member_singleton, 
select_wf, 
length_wf, 
cons_wf, 
length_of_nil_lemma, 
length_of_cons_lemma, 
istype-true, 
list_wf, 
equal_wf, 
null_wf, 
not_wf, 
list_induction, 
seq+_wf, 
seq-append_wf, 
int_term_value_add_lemma, 
itermAdd_wf, 
l_member_wf, 
istype-universe, 
equipollent_wf, 
altbarsep_wf, 
altneg_wf, 
altbar_wf, 
altunbounded_wf, 
alttree_wf, 
bool_wf, 
alt-one-path_wf, 
null_cons_lemma, 
product_subtype_list, 
btrue_neq_bfalse, 
nil_wf, 
member-implies-null-eq-bfalse, 
btrue_wf, 
null_nil_lemma, 
list-cases, 
surject_wf, 
equipollent_inversion, 
finite-type-iff-list, 
decidable__equal_int_seg, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
istype-less_than, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_subtype_base, 
subtype_base_sq, 
decidable__equal_int, 
assert_witness, 
decidable__assert, 
sq_stable_from_decidable, 
istype-assert, 
istype-nat, 
subtype_rel_self, 
le_weakening2, 
sq_stable__le, 
istype-false, 
int_seg_subtype, 
subtype_rel_function, 
istype-le, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
int_seg_properties, 
assert_wf, 
int_seg_wf, 
nat_wf, 
sq_stable__all
Rules used in proof : 
Error :functionExtensionality_alt, 
axiomEquality, 
intWeakElimination, 
functionExtensionality, 
baseApply, 
pointwiseFunctionality, 
hyp_replacement, 
equalityElimination, 
closedConclusion, 
setEquality, 
productEquality, 
addEquality, 
universeEquality, 
Error :setIsType, 
hypothesis_subsumption, 
Error :inrFormation_alt, 
Error :equalityIstype, 
Error :inlFormation_alt, 
applyLambdaEquality, 
equalitySymmetry, 
equalityTransitivity, 
Error :productIsType, 
intEquality, 
cumulativity, 
instantiate, 
Error :inhabitedIsType, 
Error :functionIsTypeImplies, 
Error :functionIsType, 
baseClosed, 
imageMemberEquality, 
Error :universeIsType, 
independent_pairFormation, 
voidElimination, 
Error :isect_memberEquality_alt, 
int_eqEquality, 
Error :dependent_pairFormation_alt, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
unionElimination, 
imageElimination, 
productElimination, 
Error :dependent_set_memberEquality_alt, 
because_Cache, 
applyEquality, 
natural_numberEquality, 
functionEquality, 
Error :lambdaEquality_alt, 
sqequalRule, 
hypothesis, 
isectElimination, 
extract_by_obid, 
introduction, 
rename, 
setElimination, 
cut, 
promote_hyp, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
Error :lambdaFormation_alt, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T:Type]
    ((\mexists{}size:\mBbbN{}.  T  \msim{}  \mBbbN{}size)
    {}\mRightarrow{}  BarSep(T;T)
    {}\mRightarrow{}  (\mforall{}A:\{A:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbB{}|  Tree(A)  \mwedge{}  Unbounded(A)\}  .  (\mneg{}bar(\mneg{}(A))))
    {}\mRightarrow{}  WKL!(T))
Date html generated:
2019_06_20-PM-02_46_55
Last ObjectModification:
2019_06_07-AM-11_57_39
Theory : fan-theorem
Home
Index