Nuprl Lemma : accum_split_prefix2
∀[A,T:Type]. ∀[x:A]. ∀[g:(T List × A) ⟶ A]. ∀[f:(T List × A) ⟶ 𝔹]. ∀[L:T List]. ∀[ZZ:(T List × A) List].
∀[Z,X:T List × A].
  accum_split(g;x;f;concat(map(λp.(fst(p));ZZ @ [Z]))) = <ZZ, Z> ∈ ((T List × A) List × T List × A) 
  supposing accum_split(g;x;f;L) = <ZZ @ [Z], X> ∈ ((T List × A) List × T List × A)
Proof
Definitions occuring in Statement : 
accum_split: accum_split(g;x;f;L)
, 
concat: concat(ll)
, 
map: map(f;as)
, 
append: as @ bs
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
pair: <a, b>
, 
product: x:A × B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
pi1: fst(t)
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
accum_split: accum_split(g;x;f;L)
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
and: P ∧ Q
, 
pi2: snd(t)
, 
or: P ∨ Q
, 
uiff: uiff(P;Q)
, 
not: ¬A
, 
false: False
, 
cons: [a / b]
, 
spreadn: spread3, 
decidable: Dec(P)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
bfalse: ff
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x)
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
nat: ℕ
, 
subtract: n - m
, 
less_than': less_than'(a;b)
, 
true: True
, 
listp: A List+
, 
squash: ↓T
, 
concat: concat(ll)
, 
sq_type: SQType(T)
, 
bnot: ¬bb
Lemmas referenced : 
last_induction, 
all_wf, 
list_wf, 
equal_wf, 
accum_split_wf, 
append_wf, 
cons_wf, 
nil_wf, 
concat_wf, 
map_wf, 
is_accum_splitting_wf, 
bool_wf, 
list_accum_nil_lemma, 
list-cases, 
null_nil_lemma, 
btrue_wf, 
null_cons_lemma, 
bfalse_wf, 
append_is_nil, 
and_wf, 
null_wf3, 
btrue_neq_bfalse, 
product_subtype_list, 
length_of_nil_lemma, 
length-append, 
subtype_rel_list, 
top_wf, 
list_accum_append, 
list_accum_cons_lemma, 
set_wf, 
decidable__assert, 
list_ind_nil_lemma, 
list_ind_cons_lemma, 
equal-wf-T-base, 
assert_wf, 
bnot_wf, 
not_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_null, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
length_wf, 
length_of_cons_lemma, 
non_neg_length, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
hd_wf, 
listp_properties, 
cons_neq_nil, 
length_wf_nat, 
nat_wf, 
decidable__lt, 
false_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
less_than_wf, 
reduce_hd_cons_lemma, 
tl_wf, 
reduce_tl_cons_lemma, 
map_cons_lemma, 
map_nil_lemma, 
concat-single, 
accum_split_inverse, 
reduce_nil_lemma, 
pi1_wf_top, 
subtype_rel_product, 
squash_wf, 
true_wf, 
last_lemma, 
last_wf, 
iff_weakening_equal, 
bool_cases, 
subtype_base_sq, 
bool_subtype_base, 
general-append-cancellation, 
ge_wf, 
length_cons_ge_one, 
map_append_sq, 
concat_append, 
bool_cases_sqequal, 
assert-bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
productEquality, 
cumulativity, 
hypothesis, 
because_Cache, 
functionEquality, 
functionExtensionality, 
applyEquality, 
independent_pairEquality, 
productElimination, 
setElimination, 
rename, 
setEquality, 
independent_functionElimination, 
lambdaFormation, 
spreadEquality, 
dependent_functionElimination, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
applyLambdaEquality, 
unionElimination, 
independent_isectElimination, 
dependent_set_memberEquality, 
promote_hyp, 
hypothesis_subsumption, 
equalityElimination, 
baseClosed, 
impliesFunctionality, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
addEquality, 
minusEquality, 
hyp_replacement, 
imageMemberEquality, 
imageElimination, 
equalityUniverse, 
levelHypothesis, 
instantiate, 
inrFormation
Latex:
\mforall{}[A,T:Type].  \mforall{}[x:A].  \mforall{}[g:(T  List  \mtimes{}  A)  {}\mrightarrow{}  A].  \mforall{}[f:(T  List  \mtimes{}  A)  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:T  List].
\mforall{}[ZZ:(T  List  \mtimes{}  A)  List].  \mforall{}[Z,X:T  List  \mtimes{}  A].
    accum\_split(g;x;f;concat(map(\mlambda{}p.(fst(p));ZZ  @  [Z])))  =  <ZZ,  Z> 
    supposing  accum\_split(g;x;f;L)  =  <ZZ  @  [Z],  X>
Date html generated:
2018_05_21-PM-08_07_48
Last ObjectModification:
2017_07_26-PM-05_43_30
Theory : general
Home
Index