Nuprl Lemma : lattice-extend-wc-meet
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[Cs:T ⟶ fset(fset(T))]. ∀[L:BoundedDistributiveLattice]. ∀[eqL:EqDecider(Point(L))].
∀[f:T ⟶ Point(L)].
  ∀[a,b:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))].
    lattice-extend-wc(L;eq;eqL;f;a) ∧ lattice-extend-wc(L;eq;eqL;f;b) ≤ lattice-extend-wc(L;eq;eqL;f;a ∧ b) 
  supposing ∀x:T. ∀c:fset(T).  (c ∈ Cs[x] 
⇒ (/\(f"(c)) = 0 ∈ Point(L)))
Proof
Definitions occuring in Statement : 
lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
lattice-fset-meet: /\(s)
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
lattice-0: 0
, 
lattice-le: a ≤ b
, 
lattice-meet: a ∧ b
, 
lattice-point: Point(l)
, 
fset-image: f"(s)
, 
deq-fset: deq-fset(eq)
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
prop: ℙ
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
lattice-le: a ≤ b
, 
subtype_rel: A ⊆r B
, 
lattice-extend': lattice-extend'(L;eq;eqL;f;ac)
, 
lattice-extend: lattice-extend(L;eq;eqL;f;ac)
, 
lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
fset-constrained-ac-glb: glb(P;ac1;ac2)
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
exists: ∃x:A. B[x]
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
list_accum: list_accum, 
f-union: f-union(domeq;rngeq;s;x.g[x])
, 
fset-image: f"(s)
, 
list_ind: list_ind, 
reduce: reduce(f;k;as)
, 
lattice-fset-meet: /\(s)
, 
cand: A c∧ B
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
bdd-lattice: BoundedLattice
, 
true: True
, 
compose: f o g
, 
f-subset: xs ⊆ ys
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
fset-union: x ⋃ y
, 
l-union: as ⋃ bs
, 
not: ¬A
, 
false: False
, 
bounded-lattice-axioms: bounded-lattice-axioms(l)
Lemmas referenced : 
bdd-distributive-lattice_wf, 
deq_wf, 
lattice-0_wf, 
fset-image_wf, 
decidable-equal-deq, 
bdd-distributive-lattice-subtype-bdd-lattice, 
lattice-fset-meet_wf, 
fset-member_wf, 
all_wf, 
lattice-join_wf, 
equal_wf, 
uall_wf, 
bounded-lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
lattice-axioms_wf, 
lattice-structure_wf, 
bounded-lattice-structure_wf, 
subtype_rel_set, 
free-dist-lattice-with-constraints_wf, 
lattice-point_wf, 
fset-constrained-ac-glb_wf, 
fset-contains-none_wf, 
fset-union_wf, 
fset-constrained-image_wf, 
deq-fset_wf, 
fset_wf, 
f-union_wf, 
lattice-extend'_wf, 
lattice-meet_wf, 
bdd-distributive-lattice-subtype-lattice, 
lattice-le_transitivity, 
free-dlwc-point, 
free-dlwc-meet, 
f-proper-subset-dec_wf, 
fset-minimals_wf, 
fset-minimals-ac-le, 
fset-ac-le_wf, 
fset-ac-le-implies2, 
member-fset-image-iff, 
lattice-fset-join_wf, 
lattice-fset-join-is-lub, 
lattice-le_wf, 
sq_stable_from_decidable, 
fset-image_functionality_wrt_subset, 
lattice-fset-meet_functionality_wrt_subset, 
iff_weakening_equal, 
bdd-lattice_wf, 
decidable_wf, 
true_wf, 
squash_wf, 
fset-image-compose, 
lattice-meet-join-images-distrib, 
lattice-fset-join_functionality_wrt_subset2, 
fset-member_witness, 
fset-singleton_wf, 
sq_stable__fset-member, 
member-f-union, 
istype-universe, 
fset-image-union, 
subtype_rel_self, 
member-fset-union, 
decidable__assert, 
member-fset-constrained-image-iff, 
member-fset-singleton, 
iff_weakening_uiff, 
assert_wf, 
rev_implies_wf, 
not_wf, 
f-subset_wf, 
assert-fset-contains-none, 
istype-void, 
deq-implies, 
lattice-le-iff
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
dependent_functionElimination, 
lambdaFormation, 
independent_functionElimination, 
functionEquality, 
universeEquality, 
productEquality, 
instantiate, 
cumulativity, 
axiomEquality, 
independent_isectElimination, 
lambdaEquality, 
rename, 
setElimination, 
functionExtensionality, 
applyEquality, 
hypothesisEquality, 
because_Cache, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
productElimination, 
baseClosed, 
imageMemberEquality, 
applyLambdaEquality, 
hyp_replacement, 
imageElimination, 
independent_pairFormation, 
dependent_pairFormation, 
natural_numberEquality, 
lambdaEquality_alt, 
universeIsType, 
inhabitedIsType, 
isectEquality, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
unionElimination, 
inrFormation_alt, 
dependent_pairFormation_alt, 
productIsType, 
equalityIstype, 
inlFormation_alt, 
functionIsType
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[Cs:T  {}\mrightarrow{}  fset(fset(T))].  \mforall{}[L:BoundedDistributiveLattice].
\mforall{}[eqL:EqDecider(Point(L))].  \mforall{}[f:T  {}\mrightarrow{}  Point(L)].
    \mforall{}[a,b:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))].
        lattice-extend-wc(L;eq;eqL;f;a)  \mwedge{}  lattice-extend-wc(L;eq;eqL;f;b) 
        \mleq{}  lattice-extend-wc(L;eq;eqL;f;a  \mwedge{}  b) 
    supposing  \mforall{}x:T.  \mforall{}c:fset(T).    (c  \mmember{}  Cs[x]  {}\mRightarrow{}  (/\mbackslash{}(f"(c))  =  0))
Date html generated:
2020_05_20-AM-08_50_20
Last ObjectModification:
2020_02_03-PM-03_27_53
Theory : lattices
Home
Index