Nuprl Lemma : q-geometric-series-converges

a:{a:ℚ|a| < 1} . ∀e:{e:ℚ0 < e ∧ (e ≤ 1)} .  ∃n:ℕ. ∀m:ℕ((n ≤ m)  0 ≤ i < m. a ↑ (1/1 a)| < e)


This theorem is one of freek's list of 100 theorems



Proof




Definitions occuring in Statement :  qexp: r ↑ n qsum: Σa ≤ j < b. E[j] qabs: |r| qle: r ≤ s qless: r < s qsub: s qdiv: (r/s) rationals: nat: le: A ≤ B all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] not: ¬A implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B and: P ∧ Q cand: c∧ B sq_stable: SqStable(P) squash: T prop: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a true: True false: False qsub: s guard: {T} iff: ⇐⇒ Q qless: r < s grp_lt: a < b set_lt: a <b assert: b ifthenelse: if then else fi  set_blt: a <b b band: p ∧b q infix_ap: y set_le: b pi2: snd(t) oset_of_ocmon: g↓oset dset_of_mon: g↓set grp_le: b pi1: fst(t) qadd_grp: <ℚ+> q_le: q_le(r;s) callbyvalueall: callbyvalueall evalall: evalall(t) qabs: |r| qpositive: qpositive(r) btrue: tt lt_int: i <j bor: p ∨bq qadd: s qmul: s bfalse: ff qeq: qeq(r;s) eq_int: (i =z j) bnot: ¬bb or: P ∨ Q exists: x:A. B[x] qlog-type: qlog-type(q;e) nat: nat_plus: + decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) le: A ≤ B less_than': less_than'(a;b) rev_implies:  Q uiff: uiff(P;Q) sq_type: SQType(T) it: unit: Unit bool: 𝔹 rev_uimplies: rev_uimplies(P;Q) ge: i ≥  top: Top
Lemmas referenced :  qadd_wf qsub_wf int-subtype-rationals zero-qle-qabs sq_stable_from_decidable qless_wf qabs_wf decidable__qless qle_wf rationals_wf set-value-type equal_wf rationals-value-type qmul_wf equal-wf-T-base squash_wf true_wf istype-universe qadd_ac_1_q qadd_comm_q subtype_rel_self qinverse_q mon_ident_q iff_weakening_equal qmul-positive qabs-positive qlog_wf nat_plus_subtype_nat qexp_wf nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf istype-le istype-nat qsum_wf int_seg_subtype_nat istype-false int_seg_wf qdiv_wf q-geometric-series qabs-zero iff_weakening_uiff assert_wf assert-bnot bool_subtype_base bool_wf subtype_base_sq bool_cases_sqequal eqff_to_assert assert-qeq eqtt_to_assert qeq_wf2 qmul-preserves-eq qmul_over_plus_qrng qmul_over_minus_qrng qmul-qdiv-cancel qadd_assoc istype-void qabs-qdiv qexp-qabs qabs-neg not_wf nat_properties qmul_preserves_qless qless_transitivity_2_qorder qle_weakening_eq_qorder qless_irreflexivity qmul_comm_qrng qmul_com qexp_preserves_qle decidable__qle qle_weakening_lt_qorder subtract_wf itermSubtract_wf int_term_value_subtract_lemma qexp-one qle_witness qexp-nonneg le_wf qmul_preserves_qle2 qmul_one_qrng qexp-add subtract-add-cancel qless_transitivity_1_qorder
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut applyLambdaEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis equalityIstype because_Cache natural_numberEquality applyEquality sqequalRule independent_pairFormation independent_functionElimination dependent_functionElimination imageMemberEquality baseClosed imageElimination dependent_set_memberEquality_alt productIsType universeIsType productElimination closedConclusion setEquality cutEval equalityTransitivity equalitySymmetry inhabitedIsType lambdaEquality_alt independent_isectElimination setIsType minusEquality hyp_replacement instantiate universeEquality inlFormation_alt dependent_pairFormation_alt unionElimination approximateComputation int_eqEquality Error :memTop,  voidElimination functionIsType equalityIsType3 cumulativity promote_hyp equalityIsType1 equalityElimination isect_memberFormation_alt isect_memberEquality_alt

Latex:
\mforall{}a:\{a:\mBbbQ{}|  |a|  <  1\}  .  \mforall{}e:\{e:\mBbbQ{}|  0  <  e  \mwedge{}  (e  \mleq{}  1)\}  .
    \mexists{}n:\mBbbN{}.  \mforall{}m:\mBbbN{}.  ((n  \mleq{}  m)  {}\mRightarrow{}  |\mSigma{}0  \mleq{}  i  <  m.  a  \muparrow{}  i  -  (1/1  -  a)|  <  e)



Date html generated: 2020_05_20-AM-09_27_18
Last ObjectModification: 2020_01_05-AM-00_14_32

Theory : rationals


Home Index