Nuprl Lemma : q-geometric-series-converges
∀a:{a:ℚ| |a| < 1} . ∀e:{e:ℚ| 0 < e ∧ (e ≤ 1)} .  ∃n:ℕ. ∀m:ℕ. ((n ≤ m) 
⇒ |Σ0 ≤ i < m. a ↑ i - (1/1 - a)| < e)
This theorem is one of freek's list of 100 theorems
Proof
Definitions occuring in Statement : 
qexp: r ↑ n
, 
qsum: Σa ≤ j < b. E[j]
, 
qabs: |r|
, 
qle: r ≤ s
, 
qless: r < s
, 
qsub: r - s
, 
qdiv: (r/s)
, 
rationals: ℚ
, 
nat: ℕ
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
true: True
, 
false: False
, 
qsub: r - s
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
qless: r < s
, 
grp_lt: a < b
, 
set_lt: a <p b
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
set_blt: a <b b
, 
band: p ∧b q
, 
infix_ap: x f y
, 
set_le: ≤b
, 
pi2: snd(t)
, 
oset_of_ocmon: g↓oset
, 
dset_of_mon: g↓set
, 
grp_le: ≤b
, 
pi1: fst(t)
, 
qadd_grp: <ℚ+>
, 
q_le: q_le(r;s)
, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t)
, 
qabs: |r|
, 
qpositive: qpositive(r)
, 
btrue: tt
, 
lt_int: i <z j
, 
bor: p ∨bq
, 
qadd: r + s
, 
qmul: r * s
, 
bfalse: ff
, 
qeq: qeq(r;s)
, 
eq_int: (i =z j)
, 
bnot: ¬bb
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
qlog-type: qlog-type(q;e)
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
sq_type: SQType(T)
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
rev_uimplies: rev_uimplies(P;Q)
, 
ge: i ≥ j 
, 
top: Top
Lemmas referenced : 
qadd_wf, 
qsub_wf, 
int-subtype-rationals, 
zero-qle-qabs, 
sq_stable_from_decidable, 
qless_wf, 
qabs_wf, 
decidable__qless, 
qle_wf, 
rationals_wf, 
set-value-type, 
equal_wf, 
rationals-value-type, 
qmul_wf, 
equal-wf-T-base, 
squash_wf, 
true_wf, 
istype-universe, 
qadd_ac_1_q, 
qadd_comm_q, 
subtype_rel_self, 
qinverse_q, 
mon_ident_q, 
iff_weakening_equal, 
qmul-positive, 
qabs-positive, 
qlog_wf, 
nat_plus_subtype_nat, 
qexp_wf, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
istype-le, 
istype-nat, 
qsum_wf, 
int_seg_subtype_nat, 
istype-false, 
int_seg_wf, 
qdiv_wf, 
q-geometric-series, 
qabs-zero, 
iff_weakening_uiff, 
assert_wf, 
assert-bnot, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
assert-qeq, 
eqtt_to_assert, 
qeq_wf2, 
qmul-preserves-eq, 
qmul_over_plus_qrng, 
qmul_over_minus_qrng, 
qmul-qdiv-cancel, 
qadd_assoc, 
istype-void, 
qabs-qdiv, 
qexp-qabs, 
qabs-neg, 
not_wf, 
nat_properties, 
qmul_preserves_qless, 
qless_transitivity_2_qorder, 
qle_weakening_eq_qorder, 
qless_irreflexivity, 
qmul_comm_qrng, 
qmul_com, 
qexp_preserves_qle, 
decidable__qle, 
qle_weakening_lt_qorder, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
qexp-one, 
qle_witness, 
qexp-nonneg, 
le_wf, 
qmul_preserves_qle2, 
qmul_one_qrng, 
qexp-add, 
subtract-add-cancel, 
qless_transitivity_1_qorder
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
applyLambdaEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
equalityIstype, 
because_Cache, 
natural_numberEquality, 
applyEquality, 
sqequalRule, 
independent_pairFormation, 
independent_functionElimination, 
dependent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_set_memberEquality_alt, 
productIsType, 
universeIsType, 
productElimination, 
closedConclusion, 
setEquality, 
cutEval, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
lambdaEquality_alt, 
independent_isectElimination, 
setIsType, 
minusEquality, 
hyp_replacement, 
instantiate, 
universeEquality, 
inlFormation_alt, 
dependent_pairFormation_alt, 
unionElimination, 
approximateComputation, 
int_eqEquality, 
Error :memTop, 
voidElimination, 
functionIsType, 
equalityIsType3, 
cumulativity, 
promote_hyp, 
equalityIsType1, 
equalityElimination, 
isect_memberFormation_alt, 
isect_memberEquality_alt
Latex:
\mforall{}a:\{a:\mBbbQ{}|  |a|  <  1\}  .  \mforall{}e:\{e:\mBbbQ{}|  0  <  e  \mwedge{}  (e  \mleq{}  1)\}  .
    \mexists{}n:\mBbbN{}.  \mforall{}m:\mBbbN{}.  ((n  \mleq{}  m)  {}\mRightarrow{}  |\mSigma{}0  \mleq{}  i  <  m.  a  \muparrow{}  i  -  (1/1  -  a)|  <  e)
Date html generated:
2020_05_20-AM-09_27_18
Last ObjectModification:
2020_01_05-AM-00_14_32
Theory : rationals
Home
Index