Nuprl Lemma : sigmacomp_wf1

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[B:{Gamma.A ⊢ _}]. ∀[cA:Gamma ⊢ CompOp(A)]. ∀[cB:Gamma.A ⊢ CompOp(B)].
  (sigmacomp(Gamma;A;B;cA;cB) ∈ I:fset(ℕ)
   ⟶ i:{i:ℕ| ¬i ∈ I} 
   ⟶ rho:Gamma(I+i)
   ⟶ phi:𝔽(I)
   ⟶ mu:{I+i,s(phi) ⊢ _:(Σ B)<rho> iota}
   ⟶ lambda:cubical-path-0(Gamma;Σ B;I;i;rho;phi;mu)
   ⟶ cubical-path-1(Gamma;Σ B;I;i;rho;phi;mu))


Proof




Definitions occuring in Statement :  sigmacomp: sigmacomp(Gamma;A;B;cA;cB) composition-op: Gamma ⊢ CompOp(A) cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u) cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) cubical-sigma: Σ B cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} subset-iota: iota cubical-subset: I,psi face-presheaf: 𝔽 csm-comp: F context-map: <rho> formal-cube: formal-cube(I) cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nc-s: s add-name: I+i fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] not: ¬A member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] sigmacomp: sigmacomp(Gamma;A;B;cA;cB) member: t ∈ T all: x:A. B[x] implies:  Q composition-op: Gamma ⊢ CompOp(A) subtype_rel: A ⊆B uimplies: supposing a nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] cubical-type: {X ⊢ _} cc-snd: q subset-iota: iota csm-comp: F csm-ap-type: (AF)s cc-fst: p csm-ap: (s)x compose: g squash: T guard: {T} true: True cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) cubical-sigma: Σ B pi1: fst(t) cubical-path-condition: cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0) pi2: snd(t) cubical-type-ap-morph: (u f) iff: ⇐⇒ Q filling-op: filling-op(Gamma;A) let: let rev_implies:  Q cube-context-adjoin: X.A context-map: <rho> csm-adjoin: (s;u) functor-arrow: arrow(F) cc-adjoin-cube: (v;u) section-iota: section-iota(Gamma;A;I;rho;a) canonical-section: canonical-section(Gamma;A;I;rho;a) csm-ap-term: (t)s cube-set-restriction: f(s) cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u) cubical-path-condition': cubical-path-condition'(Gamma;A;I;i;rho;phi;u;a1) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt bdd-distributive-lattice: BoundedDistributiveLattice uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) cubical-term-at: u(a)
Lemmas referenced :  fill_from_comp_wf cubical-path-0_wf cubical-sigma_wf cubical-type-cumulativity2 cubical-term_wf cubical-subset_wf add-name_wf cube-set-restriction_wf face-presheaf_wf2 nc-s_wf f-subset-add-name csm-ap-type_wf cubical_set_cumulativity-i-j cubical-type-cumulativity csm-comp_wf formal-cube_wf1 subset-iota_wf context-map_wf I_cube_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le nat_wf not_wf fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self fset_wf composition-op_wf cube-context-adjoin_wf cubical-type_wf cubical_set_wf csm-cubical-sigma cubical-fst_wf csm-adjoin_wf cc-fst_wf cc-snd_wf squash_wf true_wf equal_functionality_wrt_subtype_rel2 cubical_type_at_pair_lemma cubical_type_ap_morph_pair_lemma cubical-path-condition_wf pi1_wf_top cubical-type-at_wf cubical-subset-I_cube-member nc-0_wf cubical-subset-I_cube equal_wf istype-universe cubical-fst-at subtype_rel_self iff_weakening_equal cubical-snd_wf csm-id-adjoin-ap-type cc-adjoin-cube_wf cube_set_map_wf csm-equal2 istype-cubical-term I_cube_pair_redex_lemma arrow_pair_lemma cubical-type-ap-morph_wf istype-cubical-type-at cc-adjoin-cube-restriction cubical-snd-at subtype_rel-equal nc-1_wf nh-comp_wf name-morph-satisfies_wf lattice-point_wf face_lattice_wf nh-id_wf nh-id-right uiff_transitivity2 name-morph-satisfies-comp names-hom_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf nh-comp-assoc s-comp-nc-1 csm-ap-type-at cube-set-restriction-comp cubical-term-at_wf cubical-type-ap-morph-comp-general pair-eta cubical-path-condition'_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt functionExtensionality sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis inhabitedIsType lambdaFormation_alt rename setElimination equalityIstype equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination instantiate applyEquality because_Cache independent_isectElimination dependent_set_memberEquality_alt natural_numberEquality unionElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  independent_pairFormation universeIsType voidElimination setEquality intEquality productElimination imageElimination cumulativity universeEquality imageMemberEquality baseClosed hyp_replacement applyLambdaEquality independent_pairEquality dependent_pairEquality_alt productIsType productEquality isectEquality

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[B:\{Gamma.A  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  CompOp(A)].
\mforall{}[cB:Gamma.A  \mvdash{}  CompOp(B)].
    (sigmacomp(Gamma;A;B;cA;cB)  \mmember{}  I:fset(\mBbbN{})
      {}\mrightarrow{}  i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\} 
      {}\mrightarrow{}  rho:Gamma(I+i)
      {}\mrightarrow{}  phi:\mBbbF{}(I)
      {}\mrightarrow{}  mu:\{I+i,s(phi)  \mvdash{}  \_:(\mSigma{}  A  B)<rho>  o  iota\}
      {}\mrightarrow{}  lambda:cubical-path-0(Gamma;\mSigma{}  A  B;I;i;rho;phi;mu)
      {}\mrightarrow{}  cubical-path-1(Gamma;\mSigma{}  A  B;I;i;rho;phi;mu))



Date html generated: 2020_05_20-PM-04_05_10
Last ObjectModification: 2020_04_17-AM-08_49_46

Theory : cubical!type!theory


Home Index