Nuprl Lemma : fill_from_comp_wf

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[comp:Gamma ⊢ CompOp(A)].  (fill_from_comp(Gamma;A;comp) ∈ filling-op(Gamma;A))


Proof




Definitions occuring in Statement :  fill_from_comp: fill_from_comp(Gamma;A;comp) filling-op: filling-op(Gamma;A) composition-op: Gamma ⊢ CompOp(A) cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T filling-op: filling-op(Gamma;A) subtype_rel: A ⊆B filling-uniformity: filling-uniformity(Gamma;A;fill) all: x:A. B[x] uimplies: supposing a nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] fill_from_comp: fill_from_comp(Gamma;A;comp) has-value: (a)↓ face-presheaf: 𝔽 I_cube: A(I) names: names(I) squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q true: True composition-op: Gamma ⊢ CompOp(A) cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u) cube-set-restriction: f(s) pi2: snd(t) fl-join: fl-join(I;x;y) bdd-distributive-lattice: BoundedDistributiveLattice bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) functor-ob: ob(F) pi1: fst(t) lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt nc-e': g,i=j bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈  DeMorgan-algebra: DeMorganAlgebra free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) nc-s: s compose: g sq_stable: SqStable(P) label: ...$L... t context-map: <rho> subset-iota: iota csm-comp: F subset-trans: subset-trans(I;J;f;x) functor-arrow: arrow(F) cubical-term: {X ⊢ _:A} csm-ap-term: (t)s fillterm: fillterm(Gamma;A;I;i;j;rho;a0;u) csm-ap: (s)x cubical-term-at: u(a) name-morph-satisfies: (psi f) 1 cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) rev_uimplies: rev_uimplies(P;Q) f-subset: xs ⊆ ys cubical-type: {X ⊢ _} csm-ap-type: (AF)s cubical-path-condition: cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0) nc-0: (i0) names-hom: I ⟶ J fl-morph: <f> fl-lift: fl-lift(T;eq;L;eqL;f0;f1) face-lattice-property free-dist-lattice-with-constraints-property lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum
Lemmas referenced :  composition-op_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 cubical-type_wf cubical_set_wf fill_from_comp_wf2 cubical-path-0_wf istype-cubical-term cubical-subset_wf add-name_wf cube-set-restriction_wf face-presheaf_wf2 nc-s_wf f-subset-add-name csm-ap-type_wf csm-comp_wf formal-cube_wf1 subset-iota_wf context-map_wf I_cube_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le names-hom_wf istype-nat fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self istype-void fset_wf new-name_wf value-type-has-value not_wf set-value-type int-value-type ob_pair_lemma fl0_wf trivial-member-add-name1 cubical-path-0-fillterm composition-op-uniformity nc-e'_wf nc-m_wf fl-join_wf fillterm_wf equal_wf squash_wf true_wf istype-universe cubical-type-at_wf cube-set-restriction-comp nc-1_wf subtype_rel_self iff_weakening_equal nh-comp_wf nh-comp-assoc nc-m-nc-1 nh-id-right cubical-type-ap-morph_wf cube-set-restriction-when-id subtype_rel_set subtype_rel_universe1 cubical-path-condition'_wf istype-cubical-type-at subtype_rel-equal nc-e'-comp-m I_cube_pair_redex_lemma lattice-point_wf face_lattice_wf bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf fl-morph_wf fl-morph-join fl-morph-comp2 nc-e'-lemma3 fl-morph-fl0 eq_int_wf eqtt_to_assert assert_of_eq_int dM-to-FL_wf neg-dM_inc dM-to-FL-opp eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma cube_set_restriction_pair_lemma dM_wf DeMorgan-algebra-structure_wf DeMorgan-algebra-structure-subtype subtype_rel_transitivity DeMorgan-algebra-axioms_wf dm-neg_wf names_wf names-deq_wf free-DeMorgan-lattice_wf nh-comp-sq dM-lift-inc trivial-member-add-name2 dM_inc_wf sq_stable__fset-member decidable__equal_int sq_stable__not cubical-term-equal cubical-term_wf subset-trans_wf csm-ap-comp-type cube_set_map_wf csm-equal cubical-subset-I_cube-member csm-ap-term_wf cubical-path-0-ap-morph fl-morph-restriction subset-trans-iota-lemma csm-ap-type-at iff_transitivity or_wf face_lattice-1-join-irreducible fset-member-add-name isdM0_wf assert-isdM0 f-subset-add-name1 cubical-type-ap-morph-comp-eq nc-0_wf nc-e'-lemma2 nh-comp-nc-m-eq2 nc-e'-lemma4 nc-e'-lemma5 csm-ap_wf cubical-subset-I_cube name-morph-satisfies_wf nc-e'-comp-m-2 fset-member_witness dM0_wf uiff_transitivity3 fl-morph-fl0-is-1 cubical-term-at_wf nh-comp-nc-m-eq3 set_subtype_base int_subtype_base s-comp-nc-0' nc-m-nc-0 nc-0-s-commute member-cubical-subset-I_cube s-comp-nc-0 cubical-path-condition_wf cubical-path-1_wf cubical-subset-term-trans filling-uniformity_wf cubical-type-cumulativity face-lattice-property free-dist-lattice-with-constraints-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut dependent_set_memberEquality_alt sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry universeIsType thin instantiate extract_by_obid isectElimination hypothesisEquality applyEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType lambdaFormation_alt setElimination rename because_Cache independent_isectElimination dependent_functionElimination natural_numberEquality unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  independent_pairFormation voidElimination setIsType functionIsType intEquality callbyvalueReduce setEquality equalityIstype hyp_replacement imageElimination universeEquality imageMemberEquality baseClosed productElimination cumulativity productEquality isectEquality equalityElimination promote_hyp functionEquality functionExtensionality unionIsType inlFormation_alt productIsType applyLambdaEquality sqequalBase inrFormation_alt

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[comp:Gamma  \mvdash{}  CompOp(A)].
    (fill\_from\_comp(Gamma;A;comp)  \mmember{}  filling-op(Gamma;A))



Date html generated: 2020_05_20-PM-03_57_24
Last ObjectModification: 2020_04_20-PM-07_36_01

Theory : cubical!type!theory


Home Index