Nuprl Lemma : fill_from_comp_wf2

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[comp:Gamma ⊢ CompOp(A)].
  (fill_from_comp(Gamma;A;comp) ∈ I:fset(ℕ)
   ⟶ i:{i:ℕ| ¬i ∈ I} 
   ⟶ rho:Gamma(I+i)
   ⟶ phi:𝔽(I)
   ⟶ u:{I+i,s(phi) ⊢ _:(A)<rho> iota}
   ⟶ a0:cubical-path-0(Gamma;A;I;i;rho;phi;u)
   ⟶ {a:A(rho)| 
       (section-iota(Gamma;A;I+i;rho;a) u ∈ {I+i,s(phi) ⊢ _:(A)<rho> iota}) ∧ ((a rho (i0)) a0 ∈ A((i0)(rho)))} )


Proof




Definitions occuring in Statement :  fill_from_comp: fill_from_comp(Gamma;A;comp) composition-op: Gamma ⊢ CompOp(A) cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) section-iota: section-iota(Gamma;A;I;rho;a) cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type-ap-morph: (u f) cubical-type-at: A(a) cubical-type: {X ⊢ _} subset-iota: iota cubical-subset: I,psi face-presheaf: 𝔽 csm-comp: F context-map: <rho> formal-cube: formal-cube(I) cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nc-0: (i0) nc-s: s add-name: I+i fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] not: ¬A and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T face-presheaf: 𝔽 I_cube: A(I) all: x:A. B[x] names: names(I) subtype_rel: A ⊆B nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: let: let cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u) so_lambda: λ2x.t[x] so_apply: x[s] cand: c∧ B cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q true: True cubical-type: {X ⊢ _} subset-iota: iota csm-comp: F csm-ap-type: (AF)s compose: g csm-ap: (s)x section-iota: section-iota(Gamma;A;I;rho;a) canonical-section: canonical-section(Gamma;A;I;rho;a) csm-ap-term: (t)s cubical-path-condition': cubical-path-condition'(Gamma;A;I;i;rho;phi;u;a1) fl-join: fl-join(I;x;y) name-morph-satisfies: (psi f) 1 functor-ob: ob(F) pi1: fst(t) lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt bdd-distributive-lattice: BoundedDistributiveLattice fset: fset(T) quotient: x,y:A//B[x; y] cat-ob: cat-ob(C) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat formal-cube: formal-cube(I) names-hom: I ⟶ J context-map: <rho> functor-arrow: arrow(F) cube-set-restriction: f(s) fillterm: fillterm(Gamma;A;I;i;j;rho;a0;u) cubical-term-at: u(a) cubical-path-condition: cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0) fl-morph: <f> fl-lift: fl-lift(T;eq;L;eqL;f0;f1) face-lattice-property free-dist-lattice-with-constraints-property lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum pi2: snd(t) nh-comp: g ⋅ f dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) dM: dM(I) dM-lift: dM-lift(I;J;f) nc-1: (i1) bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈  DeMorgan-algebra: DeMorganAlgebra nc-0: (i0) free-dma-lift: free-dma-lift(T;eq;dm;eq2;f) free-DeMorgan-algebra-property free-dist-lattice-property empty-fset: {} nil: [] lattice-0: 0 free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) dM0: 0 nc-s: s dM_inc: <x> dminc: <i> free-dl-inc: free-dl-inc(x) fset-singleton: {x} cons: [a b]
Lemmas referenced :  fill_from_comp_wf1 ob_pair_lemma fl0_wf trivial-member-add-name1 fset-member_wf nat_wf int-deq_wf add-name_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le subtype_rel_set cubical-type-at_wf cube-set-restriction_wf nc-m_wf subtype_rel_universe1 cubical-path-condition'_wf new-name_wf fl-join_wf nc-s_wf f-subset-add-name fillterm_wf istype-cubical-type-at subtype_rel-equal fill_from_comp_property1 nc-0_wf cubical-type-ap-morph_wf cubical-path-0_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 cubical-term_wf cubical-subset_wf face-presheaf_wf2 csm-ap-type_wf csm-comp_wf formal-cube_wf1 subset-iota_wf context-map_wf I_cube_wf not_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self fset_wf composition-op_wf cubical-type_wf cubical_set_wf cubical-path-1_wf equal_wf squash_wf true_wf istype-universe cube-set-restriction-comp nc-1_wf subtype_rel_self iff_weakening_equal cube-set-restriction-when-id nh-comp_wf nc-m-nc-1 cubical-term-equal2 csm-ap-type-at section-iota_wf cubical-subset-I_cube-member member-cubical-subset-I_cube iff_transitivity lattice-point_wf face_lattice_wf fl-morph_wf lattice-join_wf bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-1_wf or_wf fl-morph-join face_lattice-1-join-irreducible cat-ob_wf op-cat_wf cube-cat_wf s-comp-if-lemma1 names-hom_wf nh-comp-assoc istype-void nh-id-right fl-morph-restriction names_wf eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int dM-lift-inc int_subtype_base isdM0_wf assert-isdM0 dM_wf DeMorgan-algebra-structure_wf DeMorgan-algebra-structure-subtype subtype_rel_transitivity DeMorgan-algebra-axioms_wf nc-0-comp-s cubical-subset-I_cube name-morph-satisfies_wf cubical-term-at_wf csm-ap_wf f-subset-add-name1 decidable__equal_int nh-comp-sq dM0_wf intformeq_wf int_formula_prop_eq_lemma dM-lift-0 dM-lift_wf2 not-added-name dM_inc_wf names-subtype set_subtype_base istype-nat fset-member-add-name equal_functionality_wrt_subtype_rel2 istype-cubical-term face-lattice-property free-dist-lattice-with-constraints-property free-DeMorgan-algebra-property free-dist-lattice-property
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality functionExtensionality sqequalRule dependent_functionElimination Error :memTop,  because_Cache dependent_set_memberEquality_alt universeIsType applyEquality setElimination rename natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality independent_pairFormation voidElimination instantiate cumulativity productIsType equalityIstype inhabitedIsType setEquality intEquality lambdaFormation_alt equalityTransitivity equalitySymmetry imageElimination universeEquality imageMemberEquality baseClosed productElimination hyp_replacement productEquality isectEquality unionIsType inlFormation_alt functionIsType equalityElimination promote_hyp applyLambdaEquality functionEquality sqequalBase inrFormation_alt

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[comp:Gamma  \mvdash{}  CompOp(A)].
    (fill\_from\_comp(Gamma;A;comp)  \mmember{}  I:fset(\mBbbN{})
      {}\mrightarrow{}  i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\} 
      {}\mrightarrow{}  rho:Gamma(I+i)
      {}\mrightarrow{}  phi:\mBbbF{}(I)
      {}\mrightarrow{}  u:\{I+i,s(phi)  \mvdash{}  \_:(A)<rho>  o  iota\}
      {}\mrightarrow{}  a0:cubical-path-0(Gamma;A;I;i;rho;phi;u)
      {}\mrightarrow{}  \{a:A(rho)|  (section-iota(Gamma;A;I+i;rho;a)  =  u)  \mwedge{}  ((a  rho  (i0))  =  a0)\}  )



Date html generated: 2020_05_20-PM-03_55_17
Last ObjectModification: 2020_04_21-AM-00_50_55

Theory : cubical!type!theory


Home Index