Nuprl Lemma : fill_from_comp_property1
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[comp:Gamma ⊢ CompOp(A)]. ∀[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[rho:Gamma(I+i)].
∀[phi:𝔽(I)]. ∀[u:{I+i,s(phi) ⊢ _:(A)<rho> o iota}]. ∀[a0:cubical-path-0(Gamma;A;I;i;rho;phi;u)].
  ((fill_from_comp(Gamma;A;comp) I i rho phi u a0 rho (i0)) = a0 ∈ A((i0)(rho)))
Proof
Definitions occuring in Statement : 
fill_from_comp: fill_from_comp(Gamma;A;comp), 
composition-op: Gamma ⊢ CompOp(A), 
cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u), 
cubical-term: {X ⊢ _:A}, 
csm-ap-type: (AF)s, 
cubical-type-ap-morph: (u a f), 
cubical-type-at: A(a), 
cubical-type: {X ⊢ _}, 
subset-iota: iota, 
cubical-subset: I,psi, 
face-presheaf: 𝔽, 
csm-comp: G o F, 
context-map: <rho>, 
formal-cube: formal-cube(I), 
cube-set-restriction: f(s), 
I_cube: A(I), 
cubical_set: CubicalSet, 
nc-0: (i0), 
nc-s: s, 
add-name: I+i, 
fset-member: a ∈ s, 
fset: fset(T), 
int-deq: IntDeq, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
set: {x:A| B[x]} , 
apply: f a, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
nat: ℕ, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
and: P ∧ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
let: let, 
cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u), 
cubical-path-condition': cubical-path-condition'(Gamma;A;I;i;rho;phi;u;a1), 
fillterm: fillterm(Gamma;A;I;i;j;rho;a0;u), 
cubical-term-at: u(a), 
names: names(I), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
guard: {T}, 
lattice-point: Point(l), 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
I_cube: A(I), 
functor-ob: ob(F), 
pi1: fst(t), 
face-presheaf: 𝔽, 
sq_type: SQType(T), 
squash: ↓T, 
true: True, 
nh-comp: g ⋅ f, 
dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g), 
compose: f o g, 
dM: dM(I), 
dM-lift: dM-lift(I;J;f), 
nc-1: (i1), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
bnot: ¬bb, 
assert: ↑b, 
nc-0: (i0), 
isdM0: isdM0(x), 
null: null(as), 
empty-fset: {}, 
nil: [], 
nequal: a ≠ b ∈ T , 
cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u), 
cand: A c∧ B, 
nc-s: s, 
dM_inc: <x>, 
dminc: <i>, 
free-dl-inc: free-dl-inc(x), 
fset-singleton: {x}, 
cons: [a / b]
Lemmas referenced : 
fill_from_comp_wf1, 
cubical-path-0_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
istype-cubical-term, 
cubical-subset_wf, 
add-name_wf, 
cube-set-restriction_wf, 
face-presheaf_wf2, 
nc-s_wf, 
f-subset-add-name, 
csm-ap-type_wf, 
csm-comp_wf, 
formal-cube_wf1, 
subset-iota_wf, 
context-map_wf, 
I_cube_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
istype-nat, 
fset-member_wf, 
nat_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
istype-void, 
fset_wf, 
composition-op_wf, 
cubical-type_wf, 
cubical_set_wf, 
cubical-subset-I_cube, 
nc-0_wf, 
name-morph-satisfies_wf, 
fl-join_wf, 
name-morph-satisfies-join, 
fl0_wf, 
trivial-member-add-name1, 
name-morph-satisfies-0, 
subtype_rel_self, 
new-name_wf, 
subtype_base_sq, 
not_wf, 
set_subtype_base, 
int_subtype_base, 
nc-1_wf, 
nc-m_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
cubical-type-at_wf, 
cube-set-restriction-comp, 
iff_weakening_equal, 
nh-comp_wf, 
names-hom_wf, 
nh-comp-assoc, 
nc-m-nc-1, 
nh-id-right, 
cubical-type-ap-morph_wf, 
istype-cubical-type-at, 
cube-set-restriction-when-id, 
subtype_rel-equal, 
bool_wf, 
bool_subtype_base, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
assert-bnot, 
neg_assert_of_eq_int, 
fset-member-add-name, 
dM-lift-inc, 
equal-wf-T-base, 
isdM0_wf, 
btrue_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
f-subset-add-name1, 
nh-comp-is-id, 
dM_inc_wf, 
names-subtype, 
names_wf, 
nh-comp-sq, 
dM-lift-nc-0, 
nh-id_wf, 
nh-id-left, 
cube-set-restriction-id, 
cubical-type-ap-morph-id
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
inhabitedIsType, 
lambdaFormation_alt, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
universeIsType, 
instantiate, 
sqequalRule, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
setElimination, 
rename, 
because_Cache, 
independent_isectElimination, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
voidElimination, 
setIsType, 
functionIsType, 
intEquality, 
productElimination, 
inrFormation_alt, 
promote_hyp, 
cumulativity, 
setEquality, 
hyp_replacement, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
equalityElimination, 
inlFormation_alt, 
applyLambdaEquality, 
sqequalBase, 
productIsType
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[comp:Gamma  \mvdash{}  CompOp(A)].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].
\mforall{}[rho:Gamma(I+i)].  \mforall{}[phi:\mBbbF{}(I)].  \mforall{}[u:\{I+i,s(phi)  \mvdash{}  \_:(A)<rho>  o  iota\}].
\mforall{}[a0:cubical-path-0(Gamma;A;I;i;rho;phi;u)].
    ((fill\_from\_comp(Gamma;A;comp)  I  i  rho  phi  u  a0  rho  (i0))  =  a0)
Date html generated:
2020_05_20-PM-03_54_44
Last ObjectModification:
2020_04_19-PM-08_11_40
Theory : cubical!type!theory
Home
Index