Nuprl Lemma : fill_from_comp_property1

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[comp:Gamma ⊢ CompOp(A)]. ∀[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[rho:Gamma(I+i)].
[phi:𝔽(I)]. ∀[u:{I+i,s(phi) ⊢ _:(A)<rho> iota}]. ∀[a0:cubical-path-0(Gamma;A;I;i;rho;phi;u)].
  ((fill_from_comp(Gamma;A;comp) rho phi a0 rho (i0)) a0 ∈ A((i0)(rho)))


Proof




Definitions occuring in Statement :  fill_from_comp: fill_from_comp(Gamma;A;comp) composition-op: Gamma ⊢ CompOp(A) cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type-ap-morph: (u f) cubical-type-at: A(a) cubical-type: {X ⊢ _} subset-iota: iota cubical-subset: I,psi face-presheaf: 𝔽 csm-comp: F context-map: <rho> formal-cube: formal-cube(I) cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nc-0: (i0) nc-s: s add-name: I+i fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] not: ¬A set: {x:A| B[x]}  apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q subtype_rel: A ⊆B uimplies: supposing a nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] let: let cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u) cubical-path-condition': cubical-path-condition'(Gamma;A;I;i;rho;phi;u;a1) fillterm: fillterm(Gamma;A;I;i;j;rho;a0;u) cubical-term-at: u(a) names: names(I) iff: ⇐⇒ Q rev_implies:  Q guard: {T} lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt I_cube: A(I) functor-ob: ob(F) pi1: fst(t) face-presheaf: 𝔽 sq_type: SQType(T) squash: T true: True nh-comp: g ⋅ f dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) compose: g dM: dM(I) dM-lift: dM-lift(I;J;f) nc-1: (i1) bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bnot: ¬bb assert: b nc-0: (i0) isdM0: isdM0(x) null: null(as) empty-fset: {} nil: [] nequal: a ≠ b ∈  cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) cand: c∧ B nc-s: s dM_inc: <x> dminc: <i> free-dl-inc: free-dl-inc(x) fset-singleton: {x} cons: [a b]
Lemmas referenced :  fill_from_comp_wf1 cubical-path-0_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 istype-cubical-term cubical-subset_wf add-name_wf cube-set-restriction_wf face-presheaf_wf2 nc-s_wf f-subset-add-name csm-ap-type_wf csm-comp_wf formal-cube_wf1 subset-iota_wf context-map_wf I_cube_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le istype-nat fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self istype-void fset_wf composition-op_wf cubical-type_wf cubical_set_wf cubical-subset-I_cube nc-0_wf name-morph-satisfies_wf fl-join_wf name-morph-satisfies-join fl0_wf trivial-member-add-name1 name-morph-satisfies-0 subtype_rel_self new-name_wf subtype_base_sq not_wf set_subtype_base int_subtype_base nc-1_wf nc-m_wf equal_wf squash_wf true_wf istype-universe cubical-type-at_wf cube-set-restriction-comp iff_weakening_equal nh-comp_wf names-hom_wf nh-comp-assoc nc-m-nc-1 nh-id-right cubical-type-ap-morph_wf istype-cubical-type-at cube-set-restriction-when-id subtype_rel-equal bool_wf bool_subtype_base eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal assert-bnot neg_assert_of_eq_int fset-member-add-name dM-lift-inc equal-wf-T-base isdM0_wf btrue_wf intformeq_wf int_formula_prop_eq_lemma f-subset-add-name1 nh-comp-is-id dM_inc_wf names-subtype names_wf nh-comp-sq dM-lift-nc-0 nh-id_wf nh-id-left cube-set-restriction-id cubical-type-ap-morph-id
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality inhabitedIsType lambdaFormation_alt equalityIstype equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination universeIsType instantiate sqequalRule isect_memberEquality_alt axiomEquality isectIsTypeImplies setElimination rename because_Cache independent_isectElimination dependent_set_memberEquality_alt natural_numberEquality unionElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  independent_pairFormation voidElimination setIsType functionIsType intEquality productElimination inrFormation_alt promote_hyp cumulativity setEquality hyp_replacement imageElimination universeEquality imageMemberEquality baseClosed equalityElimination inlFormation_alt applyLambdaEquality sqequalBase productIsType

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[comp:Gamma  \mvdash{}  CompOp(A)].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].
\mforall{}[rho:Gamma(I+i)].  \mforall{}[phi:\mBbbF{}(I)].  \mforall{}[u:\{I+i,s(phi)  \mvdash{}  \_:(A)<rho>  o  iota\}].
\mforall{}[a0:cubical-path-0(Gamma;A;I;i;rho;phi;u)].
    ((fill\_from\_comp(Gamma;A;comp)  I  i  rho  phi  u  a0  rho  (i0))  =  a0)



Date html generated: 2020_05_20-PM-03_54_44
Last ObjectModification: 2020_04_19-PM-08_11_40

Theory : cubical!type!theory


Home Index