Nuprl Lemma : derivative-log-contraction
∀a:{a:ℝ| r0 < a} . d(log-contraction(a;x))/dx = λx.(a - e^x/a + e^x)^2 on (-∞, ∞)
Proof
Definitions occuring in Statement : 
log-contraction: log-contraction(a;x), 
derivative: d(f[x])/dx = λz.g[z] on I, 
riiint: (-∞, ∞), 
rexp: e^x, 
rdiv: (x/y), 
rless: x < y, 
rnexp: x^k1, 
rsub: x - y, 
radd: a + b, 
int-to-real: r(n), 
real: ℝ, 
all: ∀x:A. B[x], 
set: {x:A| B[x]} , 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
nonzero-on: f[x]≠r0 for x ∈ I, 
sq_exists: ∃x:{A| B[x]}, 
and: P ∧ Q, 
cand: A c∧ B, 
uall: ∀[x:A]. B[x], 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
squash: ↓T, 
prop: ℙ, 
nat_plus: ℕ+, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
guard: {T}, 
uimplies: b supposing a, 
rev_implies: P ⇐ Q, 
rge: x ≥ y, 
rgt: x > y, 
itermConstant: "const", 
req_int_terms: t1 ≡ t2, 
false: False, 
not: ¬A, 
top: Top, 
uiff: uiff(P;Q), 
iff: P ⇐⇒ Q, 
rev_uimplies: rev_uimplies(P;Q), 
r-ap: f(x), 
rfun-eq: rfun-eq(I;f;g), 
less_than': less_than'(a;b), 
le: A ≤ B, 
nat: ℕ, 
subtype_rel: A ⊆r B, 
or: P ∨ Q, 
rneq: x ≠ y, 
rfun: I ⟶ℝ, 
log-contraction: log-contraction(a;x), 
rsub: x - y, 
rdiv: (x/y), 
true: True
Lemmas referenced : 
real_wf, 
sq_stable__rless, 
int-to-real_wf, 
i-member_wf, 
i-approx_wf, 
less_than_wf, 
riiint_wf, 
rless_wf, 
all_wf, 
rleq_wf, 
rabs_wf, 
radd_wf, 
rexp_wf, 
set_wf, 
nat_plus_wf, 
icompact_wf, 
rleq_weakening_rless, 
rleq_weakening_equal, 
rless_functionality_wrt_implies, 
radd_functionality_wrt_rless1, 
rexp-positive, 
rless_functionality, 
req_weakening, 
real_term_polynomial, 
itermSubtract_wf, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
rleq_functionality, 
rabs-of-nonneg, 
rleq_functionality_wrt_implies, 
rmul-is-positive, 
derivative_functionality, 
derivative-rexp, 
derivative-const, 
derivative-sub, 
derivative-rdiv, 
derivative-const-mul, 
derivative-id, 
derivative-add, 
le_wf, 
false_wf, 
rnexp_wf, 
true_wf, 
top_wf, 
subtype_rel_dep_function, 
member_riiint_lemma, 
radd_functionality, 
req_wf, 
rexp_functionality, 
rsub_functionality, 
req_functionality, 
rsub_wf, 
rdiv_wf, 
rmul_wf, 
rnexp2, 
rneq_functionality, 
rmul_comm, 
rdiv_functionality, 
rmul_functionality, 
equal_wf, 
radd-int, 
rmul-identity1, 
rmul-distrib2, 
rmul-rdiv-cancel2, 
rminus-as-rmul, 
rmul-int, 
radd-zero-both, 
radd-ac, 
radd_comm, 
radd-assoc, 
rminus-zero, 
rminus-radd, 
rmul-one-both, 
rmul-assoc, 
req_inversion, 
rmul-zero-both, 
rmul_over_rminus, 
rminus_functionality, 
rmul-distrib, 
req_transitivity, 
uiff_transitivity, 
rminus_wf, 
rmul_preserves_req, 
rmul_assoc, 
log-contraction_wf, 
rinv_wf2, 
rinv-of-rmul, 
itermMultiply_wf, 
real_term_value_mul_lemma, 
rmul-rinv3, 
rmul-rinv, 
squash_wf, 
iff_weakening_equal
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
introduction, 
extract_by_obid, 
hypothesis, 
dependent_set_memberFormation, 
setElimination, 
thin, 
rename, 
hypothesisEquality, 
sqequalHypSubstitution, 
dependent_functionElimination, 
isectElimination, 
natural_numberEquality, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_pairFormation, 
dependent_set_memberEquality, 
because_Cache, 
productEquality, 
lambdaEquality, 
functionEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
computeAll, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productElimination, 
applyEquality, 
inlFormation, 
inrFormation, 
setEquality, 
addEquality, 
multiplyEquality, 
minusEquality, 
universeEquality
Latex:
\mforall{}a:\{a:\mBbbR{}|  r0  <  a\}  .  d(log-contraction(a;x))/dx  =  \mlambda{}x.(a  -  e\^{}x/a  +  e\^{}x)\^{}2  on  (-\minfty{},  \minfty{})
Date html generated:
2017_10_04-PM-10_27_27
Last ObjectModification:
2017_07_28-AM-08_50_12
Theory : reals_2
Home
Index