Nuprl Lemma : comp-to-fill_wf2

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[cA:Gamma ⊢ Compositon(A)].  (comp-to-fill(Gamma;cA) ∈ Gamma ⊢ Filling(A))


Proof




Definitions occuring in Statement :  comp-to-fill: comp-to-fill(Gamma;cA) filling-structure: Gamma ⊢ Filling(A) composition-structure: Gamma ⊢ Compositon(A) cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T composition-structure: Gamma ⊢ Compositon(A) filling-structure: Gamma ⊢ Filling(A) prop: uniform-filling-function: uniform-filling-function{j:l, i:l}(Gamma;A;fill) all: x:A. B[x] comp-to-fill: comp-to-fill(Gamma;cA) uimplies: supposing a uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp) csm+: tau+ csm-comp: F guard: {T} cc-snd: q interval-type: 𝕀 cc-fst: p csm-ap-type: (AF)s constant-cubical-type: (X) constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} subtype_rel: A ⊆B implies:  Q true: True squash: T rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q same-cubical-type: Gamma ⊢ B partial-term-0: u[0] csm-ap: (s)x csm-adjoin: (s;u) csm-id: 1(X) compose: g cc-adjoin-cube: (v;u) csm-m: m csm-id-adjoin: [u] interval-0: 0(𝕀) same-cubical-term: X ⊢ u=v:A context-subset: Gamma, phi pi1: fst(t) csm-ap-term: (t)s cubical-term-at: u(a) case-term: (u ∨ v) cube-context-adjoin: X.A pi2: snd(t) face-zero: (i=0) not: ¬A false: False assert: b bnot: ¬bb sq_type: SQType(T) or: P ∨ Q exists: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] bdd-distributive-lattice: BoundedDistributiveLattice uiff: uiff(P;Q) it: unit: Unit bool: 𝔹 btrue: tt bfalse: ff eq_atom: =a y ifthenelse: if then else fi  record-update: r[x := v] mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) face-lattice: face-lattice(T;eq) face_lattice: face_lattice(I) record-select: r.x lattice-point: Point(l) face-presheaf: 𝔽 functor-ob: ob(F) I_cube: A(I) face-type: 𝔽 cubical-type-at: A(a) cubical-type: {X ⊢ _} dM0: 0 interval-presheaf: 𝕀 free-dist-lattice: free-dist-lattice(T; eq) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) dM: dM(I) DeMorgan-algebra: DeMorganAlgebra respects-equality: respects-equality(S;T) cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat fset: fset(T) quotient: x,y:A//B[x; y] cat-arrow: cat-arrow(C) type-cat: TypeCat names-hom: I ⟶ J cat-comp: cat-comp(C) interval-1: 1(𝕀) face-term-implies: Gamma ⊢ (phi  psi) composition-function: composition-function{j:l,i:l}(Gamma;A) face-or: (a ∨ b)
Lemmas referenced :  comp-to-fill_wf uniform-filling-function_wf composition-structure_wf cubical-type_wf cubical_set_wf csm-ap-type_wf cube-context-adjoin_wf interval-type_wf csm-id-adjoin_wf interval-0_wf partial-term-0_wf constrained-cubical-term-eqcd istype-cubical-term context-subset_wf csm-ap-term_wf face-type_wf csm-face-type cc-fst_wf_interval thin-context-subset cube_set_map_wf csm+_wf_interval csm-comp_wf csm-m_wf face-or_wf face-zero_wf cc-snd_wf context-subset-map csm-id-adjoin_wf-interval-0 cubical_set_cumulativity-i-j cc-fst_wf sub_cubical_set_self subset-cubical-term context-subset-is-subset true_wf squash_wf cubical-term_wf csm-comp-type cubical-type-cumulativity2 0-comp-cc-fst-comp-m interval-1_wf iff_weakening_equal subtype_rel_self csm-ap-id-type istype-universe equal_wf csm-m-comp-1 csm-comp-term face-and_wf csm-ap-term-wf-subset face-term-and-implies1 face-term-and-implies2 face-term-implies-subset sub_cubical_set-cumulativity1 csm-subset-domain csm-context-subset-subtype2 context-iterated-subset case-term_wf csm-m-comp-0 nat_wf fset_wf I_cube_wf I_cube_pair_redex_lemma face-or-eq-1 assert_wf iff_weakening_uiff assert-bnot bool_subtype_base bool_wf subtype_base_sq bool_cases_sqequal eqff_to_assert lattice-join_wf lattice-meet_wf bounded-lattice-axioms_wf bounded-lattice-structure-subtype lattice-axioms_wf lattice-structure_wf bounded-lattice-structure_wf subtype_rel_set assert-fl-eq eqtt_to_assert lattice-1_wf face_lattice_wf lattice-point_wf cubical-term-at_wf fl-eq_wf cubical_type_at_pair_lemma cubical-type-at_wf istype-cubical-type-at bdd-lattice_wf bdd-distributive-lattice_wf DeMorgan-algebra_wf subtype_rel_transitivity DeMorgan-algebra-subtype bdd-distributive-lattice-subtype-bdd-lattice dM_wf lattice-0-meet interval-type-at csm-ap-term-at dM0_wf DeMorgan-algebra-axioms_wf DeMorgan-algebra-structure-subtype DeMorgan-algebra-structure_wf cc-adjoin-cube_wf subtype-respects-equality cubical-term-equal cubical-term-eqcd csm-face-or csm-comp-assoc csm-ap-id-term context-adjoin-subset2 cc-fst-comp-csm-m-term context-adjoin-subset4 csm+_wf csm-interval-type face-term-implies-same csm-id-adjoin_wf-interval-1 face-or-at csm-face-zero free-DeMorgan-lattice_wf subtype_rel-equal names-deq_wf names_wf dm-neg_wf dM-to-FL_wf csm+-comp-m csm-case-term sub_cubical_set_wf csm-constrained-cubical-term face-type-at cube_set_map_cumulativity-i-j subset-cubical-type csm-id-comp csm-adjoin_wf constrained-cubical-term_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality_alt extract_by_obid isectElimination hypothesisEquality hypothesis universeIsType sqequalRule axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality_alt isectIsTypeImplies inhabitedIsType instantiate lambdaFormation_alt independent_isectElimination Error :memTop,  dependent_functionElimination because_Cache applyEquality independent_functionElimination equalityIstype hyp_replacement lambdaEquality_alt baseClosed imageMemberEquality natural_numberEquality imageElimination applyLambdaEquality productElimination universeEquality productIsType independent_pairFormation sqequalBase cumulativity functionExtensionality voidElimination promote_hyp dependent_pairFormation_alt isectEquality productEquality equalityElimination unionElimination dependent_pairEquality_alt

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  Compositon(A)].
    (comp-to-fill(Gamma;cA)  \mmember{}  Gamma  \mvdash{}  Filling(A))



Date html generated: 2020_05_20-PM-04_47_33
Last ObjectModification: 2020_05_02-AM-10_49_40

Theory : cubical!type!theory


Home Index