Nuprl Lemma : harmonic-series-diverges-to-infinity

n:ℕ((r1 (r(n)/r(2))) ≤ Σ{(r1/r(i)) 1≤i≤2^n})


Proof




Definitions occuring in Statement :  rsum: Σ{x[k] n≤k≤m} rdiv: (x/y) rleq: x ≤ y radd: b int-to-real: r(n) exp: i^n nat: all: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B nat_plus: + so_lambda: λ2x.t[x] int_seg: {i..j-} guard: {T} lelt: i ≤ j < k so_apply: x[s] subtype_rel: A ⊆B rneq: x ≠ y or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) less_than: a < b squash: T less_than': less_than'(a;b) true: True rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) rge: x ≥ y pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m] nequal: a ≠ b ∈  sq_type: SQType(T) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b rdiv: (x/y) itermConstant: "const" req_int_terms: t1 ≡ t2
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf less_than'_wf rsub_wf rsum_wf exp_wf2 nat_plus_properties rdiv_wf int-to-real_wf int_seg_properties int_seg_wf radd_wf nat_plus_wf le_wf rless-int decidable__lt intformnot_wf int_formula_prop_not_lemma rless_wf decidable__le subtract_wf itermSubtract_wf int_term_value_subtract_lemma nat_wf rsum-single req_weakening rleq_functionality int_formula_prop_eq_lemma intformeq_wf int_subtype_base equal-wf-base exp0_lemma radd-int rdiv-zero radd_functionality uiff_transitivity false_wf rleq-int-fractions2 rleq_wf exp_step rsum-split exp_wf_nat_plus le_weakening2 itermMultiply_wf int_term_value_mul_lemma add-is-int-iff itermAdd_wf int_term_value_add_lemma rleq_functionality_wrt_implies rleq_weakening_equal radd_functionality_wrt_rleq rsum_functionality_wrt_rleq rleq-int-fractions mul_nat_plus rmul_wf rneq-int int_entire_a subtype_base_sq true_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot rsum-constant2 decidable__equal_int rmul_preserves_req rinv_wf2 rneq_functionality rmul-int req_functionality req_transitivity rmul_functionality rinv_functionality2 req_inversion rinv-of-rmul real_term_polynomial real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma req-iff-rsub-is-0 rmul-rinv rmul-rinv3 rmul-rdiv-cancel radd_comm radd-assoc rmul_comm rmul-one-both rmul-distrib rleq-int rmul_preserves_rleq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination productElimination independent_pairEquality applyEquality because_Cache addEquality minusEquality axiomEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality inrFormation unionElimination imageMemberEquality baseClosed setEquality multiplyEquality applyLambdaEquality pointwiseFunctionality promote_hyp baseApply closedConclusion addLevel instantiate cumulativity equalityElimination impliesFunctionality functionEquality

Latex:
\mforall{}n:\mBbbN{}.  ((r1  +  (r(n)/r(2)))  \mleq{}  \mSigma{}\{(r1/r(i))  |  1\mleq{}i\mleq{}2\^{}n\})



Date html generated: 2017_10_03-AM-09_19_40
Last ObjectModification: 2017_07_28-AM-07_44_32

Theory : reals


Home Index