Nuprl Lemma : nearby-partition-choice

I:Interval
  (icompact(I)
   (∀p,q:partition(I). ∀e:{e:ℝr0 < e} .
        (nearby-partitions(e;p;q)
         (∀x:partition-choice(full-partition(I;p))
              ∃y:partition-choice(full-partition(I;q)). ∀i:ℕ||p|| 1. (|x[i] y[i]| ≤ e)))))


Proof




Definitions occuring in Statement :  partition-choice-ap: x[i] partition-choice: partition-choice(p) full-partition: full-partition(I;p) nearby-partitions: nearby-partitions(e;p;q) partition: partition(I) icompact: icompact(I) interval: Interval rleq: x ≤ y rless: x < y rabs: |x| rsub: y int-to-real: r(n) real: length: ||as|| int_seg: {i..j-} all: x:A. B[x] exists: x:A. B[x] implies:  Q set: {x:A| B[x]}  add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a prop: partition: partition(I) so_lambda: λ2x.t[x] so_apply: x[s] top: Top full-partition: full-partition(I;p) cand: c∧ B and: P ∧ Q nearby-partitions: nearby-partitions(e;p;q) decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A cons: [a b] select: L[n] guard: {T} sq_type: SQType(T) int_seg: {i..j-} less_than': less_than'(a;b) le: A ≤ B rev_implies:  Q iff: ⇐⇒ Q squash: T sq_stable: SqStable(P) true: True nat: subtype_rel: A ⊆B absval: |i| itermConstant: "const" req_int_terms: t1 ≡ t2 uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) icompact: icompact(I) rge: x ≥ y rgt: x > y lelt: i ≤ j < k assert: b bnot: ¬bb bfalse: ff ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 partition-choice-ap: x[i] partition-choice: partition-choice(p) ge: i ≥  less_than: a < b pi1: fst(t) subtract: m frs-non-dec: frs-non-dec(L) rless: x < y sq_exists: x:A [B[x]] nat_plus: + real:
Lemmas referenced :  partition-choice_wf full-partition_wf nearby-partitions_wf set_wf real_wf rless_wf int-to-real_wf partition_wf icompact_wf interval_wf length_wf int_seg_wf length_of_cons_lemma length-append length_of_nil_lemma decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermAdd_wf itermVar_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf int_subtype_base subtype_base_sq false_wf rleq-int sq_stable__rleq nat_wf absval_wf left-endpoint_wf rsub_wf rabs_wf rleq_wf uiff_transitivity2 rleq_functionality rabs_functionality real_term_polynomial itermSubtract_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_var_lemma req-iff-rsub-is-0 req_weakening squash_wf true_wf rabs-int rleq_functionality_wrt_implies rleq_weakening_equal rleq_weakening_rless int_seg_properties decidable__le length-singleton iff_weakening_equal top_wf subtype_rel_list length_append le_wf int_formula_prop_le_lemma int_formula_prop_less_lemma intformle_wf intformless_wf decidable__lt nil_wf right-endpoint_wf cons_wf append_wf select_cons_tl lelt_wf less_than_wf assert-bnot bool_subtype_base bool_cases_sqequal equal_wf eqff_to_assert assert_of_lt_int eqtt_to_assert bool_wf lt_int_wf set_subtype_base int_term_value_subtract_lemma subtract_wf select-append full-partition-non-dec list_wf member_rccint_lemma full-omega-unsat non_neg_length frs-non-dec_wf all_wf select_wf subtract-is-int-iff exists_wf rleq_weakening add-member-int_seg2 real_polynomial_null rless-cases radd_wf trivial-rless-radd sq_stable__rless sq_stable__less_than nat_plus_properties trivial-rsub-rless rabs-difference-bound-rleq rless_transitivity2 req_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis setElimination rename sqequalRule lambdaEquality natural_numberEquality independent_pairFormation voidEquality voidElimination isect_memberEquality dependent_functionElimination productElimination because_Cache unionElimination equalityTransitivity equalitySymmetry dependent_pairFormation int_eqEquality intEquality computeAll independent_functionElimination cumulativity instantiate imageElimination baseClosed imageMemberEquality minusEquality applyEquality addEquality universeEquality promote_hyp equalityElimination dependent_set_memberEquality approximateComputation productEquality functionEquality setEquality pointwiseFunctionality baseApply closedConclusion functionExtensionality

Latex:
\mforall{}I:Interval
    (icompact(I)
    {}\mRightarrow{}  (\mforall{}p,q:partition(I).  \mforall{}e:\{e:\mBbbR{}|  r0  <  e\}  .
                (nearby-partitions(e;p;q)
                {}\mRightarrow{}  (\mforall{}x:partition-choice(full-partition(I;p))
                            \mexists{}y:partition-choice(full-partition(I;q)).  \mforall{}i:\mBbbN{}||p||  +  1.  (|x[i]  -  y[i]|  \mleq{}  e)))))



Date html generated: 2019_10_30-AM-07_52_07
Last ObjectModification: 2018_08_23-AM-11_22_23

Theory : reals


Home Index