Nuprl Lemma : nearby-partition-choice
∀I:Interval
  (icompact(I)
  
⇒ (∀p,q:partition(I). ∀e:{e:ℝ| r0 < e} .
        (nearby-partitions(e;p;q)
        
⇒ (∀x:partition-choice(full-partition(I;p))
              ∃y:partition-choice(full-partition(I;q)). ∀i:ℕ||p|| + 1. (|x[i] - y[i]| ≤ e)))))
Proof
Definitions occuring in Statement : 
partition-choice-ap: x[i]
, 
partition-choice: partition-choice(p)
, 
full-partition: full-partition(I;p)
, 
nearby-partitions: nearby-partitions(e;p;q)
, 
partition: partition(I)
, 
icompact: icompact(I)
, 
interval: Interval
, 
rleq: x ≤ y
, 
rless: x < y
, 
rabs: |x|
, 
rsub: x - y
, 
int-to-real: r(n)
, 
real: ℝ
, 
length: ||as||
, 
int_seg: {i..j-}
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
partition: partition(I)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
top: Top
, 
full-partition: full-partition(I;p)
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
nearby-partitions: nearby-partitions(e;p;q)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
cons: [a / b]
, 
select: L[n]
, 
guard: {T}
, 
sq_type: SQType(T)
, 
int_seg: {i..j-}
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
true: True
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
absval: |i|
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
icompact: icompact(I)
, 
rge: x ≥ y
, 
rgt: x > y
, 
lelt: i ≤ j < k
, 
assert: ↑b
, 
bnot: ¬bb
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
partition-choice-ap: x[i]
, 
partition-choice: partition-choice(p)
, 
ge: i ≥ j 
, 
less_than: a < b
, 
pi1: fst(t)
, 
subtract: n - m
, 
frs-non-dec: frs-non-dec(L)
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
nat_plus: ℕ+
, 
real: ℝ
Lemmas referenced : 
partition-choice_wf, 
full-partition_wf, 
nearby-partitions_wf, 
set_wf, 
real_wf, 
rless_wf, 
int-to-real_wf, 
partition_wf, 
icompact_wf, 
interval_wf, 
length_wf, 
int_seg_wf, 
length_of_cons_lemma, 
length-append, 
length_of_nil_lemma, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
int_subtype_base, 
subtype_base_sq, 
false_wf, 
rleq-int, 
sq_stable__rleq, 
nat_wf, 
absval_wf, 
left-endpoint_wf, 
rsub_wf, 
rabs_wf, 
rleq_wf, 
uiff_transitivity2, 
rleq_functionality, 
rabs_functionality, 
real_term_polynomial, 
itermSubtract_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
req_weakening, 
squash_wf, 
true_wf, 
rabs-int, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
rleq_weakening_rless, 
int_seg_properties, 
decidable__le, 
length-singleton, 
iff_weakening_equal, 
top_wf, 
subtype_rel_list, 
length_append, 
le_wf, 
int_formula_prop_le_lemma, 
int_formula_prop_less_lemma, 
intformle_wf, 
intformless_wf, 
decidable__lt, 
nil_wf, 
right-endpoint_wf, 
cons_wf, 
append_wf, 
select_cons_tl, 
lelt_wf, 
less_than_wf, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
assert_of_lt_int, 
eqtt_to_assert, 
bool_wf, 
lt_int_wf, 
set_subtype_base, 
int_term_value_subtract_lemma, 
subtract_wf, 
select-append, 
full-partition-non-dec, 
list_wf, 
member_rccint_lemma, 
full-omega-unsat, 
non_neg_length, 
frs-non-dec_wf, 
all_wf, 
select_wf, 
subtract-is-int-iff, 
exists_wf, 
rleq_weakening, 
add-member-int_seg2, 
real_polynomial_null, 
rless-cases, 
radd_wf, 
trivial-rless-radd, 
sq_stable__rless, 
sq_stable__less_than, 
nat_plus_properties, 
trivial-rsub-rless, 
rabs-difference-bound-rleq, 
rless_transitivity2, 
req_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
lambdaEquality, 
natural_numberEquality, 
independent_pairFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
productElimination, 
because_Cache, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
independent_functionElimination, 
cumulativity, 
instantiate, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
minusEquality, 
applyEquality, 
addEquality, 
universeEquality, 
promote_hyp, 
equalityElimination, 
dependent_set_memberEquality, 
approximateComputation, 
productEquality, 
functionEquality, 
setEquality, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
functionExtensionality
Latex:
\mforall{}I:Interval
    (icompact(I)
    {}\mRightarrow{}  (\mforall{}p,q:partition(I).  \mforall{}e:\{e:\mBbbR{}|  r0  <  e\}  .
                (nearby-partitions(e;p;q)
                {}\mRightarrow{}  (\mforall{}x:partition-choice(full-partition(I;p))
                            \mexists{}y:partition-choice(full-partition(I;q)).  \mforall{}i:\mBbbN{}||p||  +  1.  (|x[i]  -  y[i]|  \mleq{}  e)))))
Date html generated:
2019_10_30-AM-07_52_07
Last ObjectModification:
2018_08_23-AM-11_22_23
Theory : reals
Home
Index