Nuprl Lemma : rv-nontrivial

n:{2...}. ∃a,b,c:ℝ^n. (a ≠ b ∧ b ≠ c ∧ c ≠ a ∧ a-b-c) ∧ b-c-a) ∧ c-a-b))


Proof




Definitions occuring in Statement :  rv-between: a-b-c real-vec-sep: a ≠ b real-vec: ^n int_upper: {i...} all: x:A. B[x] exists: x:A. B[x] not: ¬A and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] exists: x:A. B[x] member: t ∈ T real-vec: ^n uall: [x:A]. B[x] int_upper: {i...} int_seg: {i..j-} and: P ∧ Q cand: c∧ B not: ¬A implies:  Q rv-between: a-b-c real-vec-between: a-b-c top: Top req-vec: req-vec(n;x;y) lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) false: False prop: real-vec-sep: a ≠ b rless: x < y sq_exists: x:{A| B[x]} nat_plus: + guard: {T} decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) real-vec-mul: a*X real-vec-add: Y eq_int: (i =z j) ifthenelse: if then else fi  btrue: tt bfalse: ff subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s] rsub: y uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q less_than: a < b squash: T true: True real-vec-dist: d(x;y) real-vec-norm: ||x|| rev_uimplies: rev_uimplies(P;Q) real-vec-sub: Y dot-product: x⋅y bool: 𝔹 unit: Unit it: sq_type: SQType(T) bnot: ¬bb assert: b pointwise-req: x[k] y[k] for k ∈ [n,m] subtract: m real: sq_stable: SqStable(P) nequal: a ≠ b ∈ 
Lemmas referenced :  int-to-real_wf int_seg_wf ifthenelse_wf eq_int_wf real_wf member_rooint_lemma false_wf nat_plus_properties int_upper_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf lelt_wf rv-between_wf int_upper_subtype_nat le_wf real-vec-sep_wf not_wf exists_wf real-vec_wf int_upper_wf req_wf radd_wf rmul_wf rminus_wf rless_transitivity2 rleq_weakening_rless rless_transitivity1 rleq_weakening rless_irreflexivity req_inversion uiff_transitivity req_functionality req_weakening radd_functionality req_transitivity rmul-distrib rmul_over_rminus rminus_functionality rmul-zero-both rminus-zero radd-zero-both rmul-one-both radd-ac radd_comm real-vec-dist_wf rless-int rless_functionality rsqrt_wf dot-product-nonneg real-vec-sub_wf dot-product_wf rleq_wf rleq-int rsqrt1 rsqrt_functionality rsum_wf subtract_wf rsub_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int decidable__le itermSubtract_wf int_term_value_subtract_lemma rsum-split-first rsum_functionality intformeq_wf int_formula_prop_eq_lemma rmul_functionality rsub-int rmul-int rsum-constant sq_stable__less_than radd-assoc rmul-identity1 rmul-distrib2 radd-int rsqrt-positive rless_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation dependent_pairFormation sqequalRule lambdaEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis setElimination rename hypothesisEquality because_Cache independent_pairFormation productElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality addLevel dependent_set_memberEquality unionElimination independent_isectElimination int_eqEquality intEquality computeAll levelHypothesis applyEquality productEquality independent_functionElimination imageMemberEquality baseClosed setEquality addEquality equalityElimination equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity multiplyEquality imageElimination

Latex:
\mforall{}n:\{2...\}.  \mexists{}a,b,c:\mBbbR{}\^{}n.  (a  \mneq{}  b  \mwedge{}  b  \mneq{}  c  \mwedge{}  c  \mneq{}  a  \mwedge{}  (\mneg{}a-b-c)  \mwedge{}  (\mneg{}b-c-a)  \mwedge{}  (\mneg{}c-a-b))



Date html generated: 2017_10_03-AM-11_15_03
Last ObjectModification: 2017_07_28-AM-08_24_54

Theory : reals


Home Index