Nuprl Lemma : arcsine-bounds2
∀x:{x:ℝ| (r0 < x) ∧ (x < (r(3)/r(4)))} . (|arcsine(x) - x| < (r1/r(10)))
Proof
Definitions occuring in Statement : 
arcsine: arcsine(x), 
rdiv: (x/y), 
rless: x < y, 
rabs: |x|, 
rsub: x - y, 
int-to-real: r(n), 
real: ℝ, 
all: ∀x:A. B[x], 
and: P ∧ Q, 
set: {x:A| B[x]} , 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
and: P ∧ Q, 
cand: A c∧ B, 
member: t ∈ T, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_lambda: λ2x.t[x], 
uimplies: b supposing a, 
rneq: x ≠ y, 
guard: {T}, 
or: P ∨ Q, 
so_apply: x[s], 
rfun: I ⟶ℝ, 
top: Top, 
subinterval: I ⊆ J , 
rev_uimplies: rev_uimplies(P;Q), 
uiff: uiff(P;Q), 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
sq_exists: ∃x:{A| B[x]}, 
rless: x < y, 
not: ¬A, 
rooint: (l, u), 
i-member: r ∈ I, 
subtype_rel: A ⊆r B, 
real-fun: real-fun(f;a;b), 
ifun: ifun(f;I), 
sq_stable: SqStable(P), 
rccint: [l, u], 
arcsine_deriv: arcsine_deriv(x), 
rsub: x - y, 
rge: x ≥ y, 
strictly-increasing-on-interval: f[x] strictly-increasing for x ∈ I, 
le: A ≤ B, 
rgt: x > y, 
itermConstant: "const", 
req_int_terms: t1 ≡ t2, 
rdiv: (x/y), 
real: ℝ, 
rmul: a * b, 
int-to-real: r(n), 
rinv: rinv(x), 
mu-ge: mu-ge(f;n), 
ifthenelse: if b then t else f fi , 
lt_int: i <z j, 
absval: |i|, 
btrue: tt, 
eq_int: (i =z j), 
accelerate: accelerate(k;f), 
imax: imax(a;b), 
canonical-bound: canonical-bound(r), 
reg-seq-inv: reg-seq-inv(x), 
le_int: i ≤z j, 
bnot: ¬bb, 
bfalse: ff, 
reg-seq-mul: reg-seq-mul(x;y), 
rminus: -(x), 
halfpi: π/2, 
cubic_converge: cubic_converge(b;m), 
fastpi: fastpi(n), 
primrec: primrec(n;b;c), 
radd: a + b, 
reg-seq-list-add: reg-seq-list-add(L), 
cbv_list_accum: cbv_list_accum(x,a.f[x; a];y;L), 
cons: [a / b], 
nil: [], 
it: ⋅
Lemmas referenced : 
rless-int, 
rless-int-fractions3, 
less_than_wf, 
set_wf, 
real_wf, 
rless_wf, 
int-to-real_wf, 
rdiv_wf, 
derivative-implies-strictly-increasing-closed, 
rless-int-fractions2, 
rsub_wf, 
arcsine_wf, 
member_rooint_lemma, 
member_rccint_lemma, 
rless_transitivity1, 
rless_transitivity2, 
i-member_wf, 
rccint_wf, 
arcsine_deriv_wf, 
rooint_wf, 
derivative-id, 
derivative-sub, 
derivative_functionality_wrt_subinterval, 
rleq_wf, 
derivative-arcsine, 
req_wf, 
req_weakening, 
arcsine_deriv_functionality, 
rsub_functionality, 
equal_wf, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_formula_prop_eq_lemma, 
itermConstant_wf, 
intformeq_wf, 
satisfiable-full-omega-tt, 
nat_plus_properties, 
rneq-int, 
subtype_rel_sets, 
rleq_transitivity, 
rleq_weakening, 
req_inversion, 
req_functionality, 
right_endpoint_rccint_lemma, 
left_endpoint_rccint_lemma, 
sq_stable__rleq, 
arcsine-root-bounds, 
rsqrt0, 
rless_functionality, 
rleq_weakening_rless, 
rsqrt_wf, 
rmul_wf, 
rleq_weakening_equal, 
rsqrt_functionality_wrt_rless, 
radd-rminus-assoc, 
radd-rminus-both, 
radd_comm, 
radd_functionality, 
radd-ac, 
req_transitivity, 
radd-assoc, 
rleq_functionality, 
uiff_transitivity, 
square-nonneg, 
rminus_wf, 
radd_wf, 
radd-preserves-rleq, 
rsqrt_functionality_wrt_rleq, 
rleq_functionality_wrt_implies, 
rsqrt1, 
rmul-one-both, 
rmul-rdiv-cancel2, 
radd-int, 
rmul_preserves_rleq, 
sq_stable__rless, 
rmul-is-positive, 
radd-preserves-rless, 
rmul_preserves_rless, 
rleq-int-fractions2, 
false_wf, 
arcsine0, 
rabs_wf, 
rabs-of-nonneg, 
real_term_polynomial, 
itermSubtract_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
req-iff-rsub-is-0, 
rless_functionality_wrt_implies, 
rinv_wf2, 
rinv-as-rdiv, 
itermAdd_wf, 
itermMultiply_wf, 
itermVar_wf, 
real_term_value_add_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
rsin_wf, 
halfpi_wf, 
rsin-strict-bound, 
arcsine_functionality_wrt_rless, 
arcsine-rsin
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
minusEquality, 
natural_numberEquality, 
productElimination, 
independent_functionElimination, 
sqequalRule, 
independent_pairFormation, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
hypothesis, 
dependent_set_memberEquality, 
isectElimination, 
multiplyEquality, 
because_Cache, 
lambdaEquality, 
productEquality, 
independent_isectElimination, 
inrFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
setElimination, 
rename, 
setEquality, 
computeAll, 
intEquality, 
dependent_pairFormation, 
applyEquality, 
imageElimination, 
equalitySymmetry, 
equalityTransitivity, 
addEquality, 
levelHypothesis, 
addLevel, 
inlFormation, 
int_eqEquality, 
dependent_set_memberFormation
Latex:
\mforall{}x:\{x:\mBbbR{}|  (r0  <  x)  \mwedge{}  (x  <  (r(3)/r(4)))\}  .  (|arcsine(x)  -  x|  <  (r1/r(10)))
Date html generated:
2017_10_04-PM-10_50_37
Last ObjectModification:
2017_07_28-AM-08_51_50
Theory : reals_2
Home
Index