Nuprl Lemma : implies-k-1-continuous
∀[k:ℕ]. ∀[F:(ℕk ⟶ Type) ⟶ Type].
  ((∀[A,B:ℕk ⟶ Type].  F[A] ⊆r F[B] supposing A ⊆ B)
  ⇒ (∀j:ℕk. ∀Z:ℕk ⟶ Type.  Continuous(X.F[λi.if (i =z j) then X else Z i fi ]))
  ⇒ k-1-continuous{i:l}(k;T.F[T]))
Proof
Definitions occuring in Statement : 
k-1-continuous: k-1-continuous{i:l}(k;T.F[T]), 
k-subtype: A ⊆ B, 
type-continuous: Continuous(T.F[T]), 
int_seg: {i..j-}, 
nat: ℕ, 
ifthenelse: if b then t else f fi , 
eq_int: (i =z j), 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
k-1-continuous: k-1-continuous{i:l}(k;T.F[T]), 
k-intersection: ⋂n. X[n], 
prop: ℙ, 
so_lambda: λ2x.t[x], 
nat: ℕ, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
false: False, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
sq_stable: SqStable(P), 
squash: ↓T, 
subtract: n - m, 
subtype_rel: A ⊆r B, 
le: A ≤ B, 
less_than': less_than'(a;b), 
true: True, 
so_apply: x[s], 
int_seg: {i..j-}, 
top: Top, 
ge: i ≥ j , 
guard: {T}, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
lelt: i ≤ j < k, 
bfalse: ff, 
exists: ∃x:A. B[x], 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
type-continuous: Continuous(T.F[T]), 
nequal: a ≠ b ∈ T , 
cand: A c∧ B, 
label: ...$L... t, 
k-subtype: A ⊆ B, 
nat_plus: ℕ+, 
less_than: a < b
Lemmas referenced : 
all_wf, 
nat_wf, 
k-subtype_wf, 
decidable__le, 
false_wf, 
not-le-2, 
sq_stable__le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
le_wf, 
int_seg_wf, 
type-continuous_wf, 
ifthenelse_wf, 
eq_int_wf, 
uall_wf, 
subtype_rel_wf, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
subtract_wf, 
not-ge-2, 
less-iff-le, 
minus-minus, 
subtype_rel_isect-2, 
lt_int_wf, 
subtype_rel-equal, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
decidable__lt, 
not-lt-2, 
le-add-cancel-alt, 
lelt_wf, 
squash_wf, 
true_wf, 
assert_of_eq_int, 
neg_assert_of_eq_int, 
int_subtype_base, 
isect_wf, 
less_than_transitivity2, 
le_weakening, 
not-equal-2, 
le_antisymmetry_iff, 
le-add-cancel2, 
subtype_rel_self, 
subtype_rel_isect_general, 
member_wf, 
imax_unfold, 
le_int_wf, 
set_subtype_base, 
imax_wf, 
iff_weakening_equal, 
add-mul-special, 
two-mul, 
mul-distributes-right, 
zero-mul, 
one-mul, 
minus-zero, 
add_nat_wf, 
subtype_rel_transitivity, 
le_reflexive, 
omega-shadow, 
mul-distributes, 
mul-commutes, 
mul-associates, 
mul-swap, 
int_seg_properties, 
assert_of_le_int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
applyEquality, 
functionExtensionality, 
because_Cache, 
dependent_set_memberEquality, 
addEquality, 
setElimination, 
rename, 
natural_numberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_pairFormation, 
voidElimination, 
productElimination, 
independent_functionElimination, 
independent_isectElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
minusEquality, 
axiomEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
instantiate, 
isectEquality, 
isect_memberEquality, 
voidEquality, 
intEquality, 
intWeakElimination, 
equalityElimination, 
dependent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
hyp_replacement, 
sqequalIntensionalEquality, 
multiplyEquality, 
applyLambdaEquality, 
addLevel, 
levelHypothesis
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[F:(\mBbbN{}k  {}\mrightarrow{}  Type)  {}\mrightarrow{}  Type].
    ((\mforall{}[A,B:\mBbbN{}k  {}\mrightarrow{}  Type].    F[A]  \msubseteq{}r  F[B]  supposing  A  \msubseteq{}  B)
    {}\mRightarrow{}  (\mforall{}j:\mBbbN{}k.  \mforall{}Z:\mBbbN{}k  {}\mrightarrow{}  Type.    Continuous(X.F[\mlambda{}i.if  (i  =\msubz{}  j)  then  X  else  Z  i  fi  ]))
    {}\mRightarrow{}  k-1-continuous\{i:l\}(k;T.F[T]))
 Date html generated: 
2018_05_21-PM-00_10_12
 Last ObjectModification: 
2017_10_18-PM-02_38_51
Theory : co-recursion
Home
Index