Nuprl Lemma : bounded-expectation

p:FinProbSpace. ∀f:ℕ ⟶ ℕ. ∀X:n:ℕ ⟶ RandomVariable(p;f[n]). ∀B:ℚ.
  (nullset(p;(X[n]⟶∞ as n⟶∞))) supposing 
     ((∀n:ℕ(0 ≤ X[n] ∧ E(f[n];X[n]) < B)) and 
     0 < and 
     (∀n:ℕ. ∀i:ℕn.  X[i] ≤ X[n]) and 
     (∀n:ℕ. ∀i:ℕn.  f[i] < f[n]))


Proof




Definitions occuring in Statement :  rv-unbounded: (X[n]⟶∞ as n⟶∞) nullset: nullset(p;S) rv-le: X ≤ Y expectation: E(n;F) rv-const: a random-variable: RandomVariable(p;n) finite-prob-space: FinProbSpace qless: r < s rationals: int_seg: {i..j-} nat: less_than: a < b uimplies: supposing a so_apply: x[s] all: x:A. B[x] and: P ∧ Q function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] so_apply: x[s] nat: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: subtype_rel: A ⊆B guard: {T} uiff: uiff(P;Q) qdiv: (r/s) iff: ⇐⇒ Q true: True rev_implies:  Q cand: c∧ B random-variable: RandomVariable(p;n) finite-prob-space: FinProbSpace so_lambda: λ2x.t[x] less_than': less_than'(a;b) p-outcome: Outcome pi1: fst(t) pi2: snd(t) sq_type: SQType(T) p-open: p-open(p) p-measure-le: measure(C) ≤ q rv-le: X ≤ Y rv-const: a rv-qle: A ≤ B istype: istype(T) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff p-open-member: s ∈ C nullset: nullset(p;S) sq_stable: SqStable(P) rv-unbounded: (X[n]⟶∞ as n⟶∞)
Lemmas referenced :  member-less_than int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le istype-nat rv-le_witness subtype_rel-random-variable le_weakening2 qless_witness int-subtype-rationals rv-const_wf expectation_wf rv-le_wf qless_wf int_seg_wf istype-less_than rationals_wf random-variable_wf finite-prob-space_wf qless_transitivity_2_qorder qle_weakening_eq_qorder qless_irreflexivity qmul_preserves_qless qdiv_wf qinv-positive qmul_wf squash_wf true_wf qmul_comm_qrng qinv_wf iff_weakening_uiff assert_wf qeq_wf2 equal-wf-T-base assert-qeq istype-assert subtype_rel_self iff_weakening_equal qmul_zero_qrng qmul_assoc_qrng qmul_one_qrng Markov-inequality rv-qle_wf equal_wf qmul_com istype-universe not_wf qmul-qdiv-cancel2 qmul_ident qdiv-qdiv qless_transitivity_1_qorder p-open_wf p-measure-le_wf p-outcome_wf qle_wf length_wf subtype_rel_dep_function nat_wf int_seg_subtype_nat istype-false p-open-member_wf decidable__exists_int_seg less_than_wf int_seg_subtype decidable__cand decidable__lt decidable__qle decidable_wf intformless_wf int_formula_prop_less_lemma subtype_base_sq int_subtype_base set_subtype_base lelt_wf subtype_rel_function decidable__equal_int intformeq_wf int_formula_prop_eq_lemma ge_wf le_witness_for_triv istype-void subtract-1-ge-0 itermSubtract_wf int_term_value_subtract_lemma subtract_wf int_seg_inc qle_reflexivity expectation-monotone-in-first expectation-monotone le_weakening q_le_wf bool_wf bnot_wf qle-int uiff_transitivity2 eqtt_to_assert assert-q_le-eq iff_transitivity eqff_to_assert assert_of_bnot qle_transitivity_qorder add_nat_wf add-is-int-iff itermAdd_wf int_term_value_add_lemma false_wf sq_stable_from_decidable decidable__qless rv-unbounded_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt cut introduction sqequalRule sqequalHypSubstitution lambdaEquality_alt dependent_functionElimination thin hypothesisEquality extract_by_obid isectElimination applyEquality dependent_set_memberEquality_alt setElimination rename hypothesis productElimination imageElimination natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality Error :memTop,  independent_pairFormation universeIsType voidElimination because_Cache functionIsTypeImplies inhabitedIsType closedConclusion independent_pairEquality functionIsType productIsType equalityIstype promote_hyp equalityTransitivity equalitySymmetry baseClosed imageMemberEquality instantiate universeEquality hyp_replacement sqequalBase functionEquality productEquality isect_memberEquality_alt functionExtensionality cumulativity intEquality dependent_pairEquality_alt applyLambdaEquality intWeakElimination equalityElimination addEquality pointwiseFunctionality baseApply setIsType

Latex:
\mforall{}p:FinProbSpace.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}X:n:\mBbbN{}  {}\mrightarrow{}  RandomVariable(p;f[n]).  \mforall{}B:\mBbbQ{}.
    (nullset(p;(X[n]{}\mrightarrow{}\minfty{}  as  n{}\mrightarrow{}\minfty{})))  supposing 
          ((\mforall{}n:\mBbbN{}.  (0  \mleq{}  X[n]  \mwedge{}  E(f[n];X[n])  <  B))  and 
          0  <  B  and 
          (\mforall{}n:\mBbbN{}.  \mforall{}i:\mBbbN{}n.    X[i]  \mleq{}  X[n])  and 
          (\mforall{}n:\mBbbN{}.  \mforall{}i:\mBbbN{}n.    f[i]  <  f[n]))



Date html generated: 2020_05_20-AM-09_31_52
Last ObjectModification: 2020_01_01-AM-11_22_52

Theory : randomness


Home Index