Nuprl Lemma : bounded-expectation
∀p:FinProbSpace. ∀f:ℕ ⟶ ℕ. ∀X:n:ℕ ⟶ RandomVariable(p;f[n]). ∀B:ℚ.
  (nullset(p;(X[n]⟶∞ as n⟶∞))) supposing 
     ((∀n:ℕ. (0 ≤ X[n] ∧ E(f[n];X[n]) < B)) and 
     0 < B and 
     (∀n:ℕ. ∀i:ℕn.  X[i] ≤ X[n]) and 
     (∀n:ℕ. ∀i:ℕn.  f[i] < f[n]))
Proof
Definitions occuring in Statement : 
rv-unbounded: (X[n]⟶∞ as n⟶∞)
, 
nullset: nullset(p;S)
, 
rv-le: X ≤ Y
, 
expectation: E(n;F)
, 
rv-const: a
, 
random-variable: RandomVariable(p;n)
, 
finite-prob-space: FinProbSpace
, 
qless: r < s
, 
rationals: ℚ
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
qdiv: (r/s)
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
random-variable: RandomVariable(p;n)
, 
finite-prob-space: FinProbSpace
, 
so_lambda: λ2x.t[x]
, 
less_than': less_than'(a;b)
, 
p-outcome: Outcome
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
sq_type: SQType(T)
, 
p-open: p-open(p)
, 
p-measure-le: measure(C) ≤ q
, 
rv-le: X ≤ Y
, 
rv-const: a
, 
rv-qle: A ≤ B
, 
istype: istype(T)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
p-open-member: s ∈ C
, 
nullset: nullset(p;S)
, 
sq_stable: SqStable(P)
, 
rv-unbounded: (X[n]⟶∞ as n⟶∞)
Lemmas referenced : 
member-less_than, 
int_seg_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
istype-nat, 
rv-le_witness, 
subtype_rel-random-variable, 
le_weakening2, 
qless_witness, 
int-subtype-rationals, 
rv-const_wf, 
expectation_wf, 
rv-le_wf, 
qless_wf, 
int_seg_wf, 
istype-less_than, 
rationals_wf, 
random-variable_wf, 
finite-prob-space_wf, 
qless_transitivity_2_qorder, 
qle_weakening_eq_qorder, 
qless_irreflexivity, 
qmul_preserves_qless, 
qdiv_wf, 
qinv-positive, 
qmul_wf, 
squash_wf, 
true_wf, 
qmul_comm_qrng, 
qinv_wf, 
iff_weakening_uiff, 
assert_wf, 
qeq_wf2, 
equal-wf-T-base, 
assert-qeq, 
istype-assert, 
subtype_rel_self, 
iff_weakening_equal, 
qmul_zero_qrng, 
qmul_assoc_qrng, 
qmul_one_qrng, 
Markov-inequality, 
rv-qle_wf, 
equal_wf, 
qmul_com, 
istype-universe, 
not_wf, 
qmul-qdiv-cancel2, 
qmul_ident, 
qdiv-qdiv, 
qless_transitivity_1_qorder, 
p-open_wf, 
p-measure-le_wf, 
p-outcome_wf, 
qle_wf, 
length_wf, 
subtype_rel_dep_function, 
nat_wf, 
int_seg_subtype_nat, 
istype-false, 
p-open-member_wf, 
decidable__exists_int_seg, 
less_than_wf, 
int_seg_subtype, 
decidable__cand, 
decidable__lt, 
decidable__qle, 
decidable_wf, 
intformless_wf, 
int_formula_prop_less_lemma, 
subtype_base_sq, 
int_subtype_base, 
set_subtype_base, 
lelt_wf, 
subtype_rel_function, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
ge_wf, 
le_witness_for_triv, 
istype-void, 
subtract-1-ge-0, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
subtract_wf, 
int_seg_inc, 
qle_reflexivity, 
expectation-monotone-in-first, 
expectation-monotone, 
le_weakening, 
q_le_wf, 
bool_wf, 
bnot_wf, 
qle-int, 
uiff_transitivity2, 
eqtt_to_assert, 
assert-q_le-eq, 
iff_transitivity, 
eqff_to_assert, 
assert_of_bnot, 
qle_transitivity_qorder, 
add_nat_wf, 
add-is-int-iff, 
itermAdd_wf, 
int_term_value_add_lemma, 
false_wf, 
sq_stable_from_decidable, 
decidable__qless, 
rv-unbounded_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality_alt, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
applyEquality, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
hypothesis, 
productElimination, 
imageElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
because_Cache, 
functionIsTypeImplies, 
inhabitedIsType, 
closedConclusion, 
independent_pairEquality, 
functionIsType, 
productIsType, 
equalityIstype, 
promote_hyp, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
imageMemberEquality, 
instantiate, 
universeEquality, 
hyp_replacement, 
sqequalBase, 
functionEquality, 
productEquality, 
isect_memberEquality_alt, 
functionExtensionality, 
cumulativity, 
intEquality, 
dependent_pairEquality_alt, 
applyLambdaEquality, 
intWeakElimination, 
equalityElimination, 
addEquality, 
pointwiseFunctionality, 
baseApply, 
setIsType
Latex:
\mforall{}p:FinProbSpace.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}X:n:\mBbbN{}  {}\mrightarrow{}  RandomVariable(p;f[n]).  \mforall{}B:\mBbbQ{}.
    (nullset(p;(X[n]{}\mrightarrow{}\minfty{}  as  n{}\mrightarrow{}\minfty{})))  supposing 
          ((\mforall{}n:\mBbbN{}.  (0  \mleq{}  X[n]  \mwedge{}  E(f[n];X[n])  <  B))  and 
          0  <  B  and 
          (\mforall{}n:\mBbbN{}.  \mforall{}i:\mBbbN{}n.    X[i]  \mleq{}  X[n])  and 
          (\mforall{}n:\mBbbN{}.  \mforall{}i:\mBbbN{}n.    f[i]  <  f[n]))
Date html generated:
2020_05_20-AM-09_31_52
Last ObjectModification:
2020_01_01-AM-11_22_52
Theory : randomness
Home
Index