Nuprl Lemma : nerve_box_edge1_wf

[G:Groupoid]. ∀[I:Cname List]. ∀[J:nameset(I) List]. ∀[j:nameset(J)]. ∀[x:nameset(I)]. ∀[i:ℕ2].
[box:open_box(cubical-nerve(cat(G));I;J;x;i)]. ∀[y:nameset(I)]. ∀[c:{c:name-morph(I;[])| (c y) 0 ∈ ℕ2} ].
  nerve_box_edge1(G;box;x;i;j;c;y) ∈ cat-arrow(cat(G)) nerve_box_label(box;c) nerve_box_label(box;flip(c;y)) 
  supposing (∀j'∈J.j' j ∈ Cname)


Proof




Definitions occuring in Statement :  nerve_box_edge1: nerve_box_edge1(G;box;x;i;j;c;y) nerve_box_label: nerve_box_label(box;L) cubical-nerve: cubical-nerve(X) open_box: open_box(X;I;J;x;i) name-morph-flip: flip(f;y) name-morph: name-morph(I;J) nameset: nameset(L) coordinate_name: Cname groupoid-cat: cat(G) groupoid: Groupoid cat-arrow: cat-arrow(C) l_all: (∀x∈L.P[x]) nil: [] list: List int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  apply: a natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] or: P ∨ Q nameset: nameset(L) l_member: (x ∈ l) exists: x:A. B[x] cand: c∧ B select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] false: False coordinate_name: Cname int_upper: {i...} guard: {T} int_seg: {i..j-} squash: T lelt: i ≤ j < k and: P ∧ Q nat: ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A prop: cons: [a b] subtype_rel: A ⊆B assert: b ifthenelse: if then else fi  btrue: tt bfalse: ff iff: ⇐⇒ Q null: null(as) rev_implies:  Q true: True nerve_box_edge1: nerve_box_edge1(G;box;x;i;j;c;y) name-morph: name-morph(I;J) bool: 𝔹 unit: Unit uiff: uiff(P;Q) bor: p ∨bq sq_type: SQType(T) bnot: ¬bb so_lambda: λ2x.t[x] so_apply: x[s] decidable: Dec(P) sq_stable: SqStable(P) open_box: open_box(X;I;J;x;i) eq_int: (i =z j) le: A ≤ B less_than': less_than'(a;b) nequal: a ≠ b ∈  less_than: a < b name-morph-flip: flip(f;y) subtract: m l_exists: (∃x∈L. P[x]) l_all: (∀x∈L.P[x])
Lemmas referenced :  nameset_wf list-cases null_nil_lemma btrue_wf stuck-spread base_wf length_of_nil_lemma int_seg_properties nat_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf btrue_neq_bfalse product_subtype_list assert_elim null_wf3 cons_wf subtype_rel_list top_wf equal_wf bool_wf ppcc-problem iff_imp_equal_bool bfalse_wf true_wf false_wf iff_weakening_equal assert_wf eq_int_wf eqtt_to_assert assert_of_eq_int extd-nameset_subtype_int nil_wf coordinate_name_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int l_all_wf2 l_member_wf set_wf name-morph_wf equal-wf-T-base int_seg_wf extd-nameset-nil open_box_wf cubical-nerve_wf groupoid-cat_wf list_wf groupoid_wf nerve_box_edge_wf decidable__equal_int intformnot_wf intformeq_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma sq_stable__l_member decidable__equal-coordinate_name sq_stable__le decidable__le decidable__lt lelt_wf l_exists_wf not_wf eq-cname_wf assert-eq-cname set_subtype_base le_wf int_subtype_base int_seg_subtype int_seg_cases null_cons_lemma equal-wf-base subtract_wf itermSubtract_wf int_term_value_subtract_lemma name-morph-ext name-morph-flip_wf squash_wf extd-nameset_wf name-morph-flips-commute name-morph-flip-flip groupoid-square1_wf nerve_box_label_wf decidable__assert cat-arrow_wf cat-square-commutes_wf length_of_cons_lemma length_wf_nat nat_wf not-lt-2 not-equal-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel length_wf select_wf nerve_box_edge_wf2 subtype_rel-equal or_wf small-category_wf groupoid-square2_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_functionElimination unionElimination sqequalRule setElimination rename productElimination baseClosed independent_isectElimination lambdaFormation isect_memberEquality voidElimination voidEquality natural_numberEquality applyLambdaEquality imageMemberEquality imageElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality independent_pairFormation computeAll equalityTransitivity equalitySymmetry independent_functionElimination promote_hyp hypothesis_subsumption addLevel applyEquality because_Cache levelHypothesis inlEquality equalityElimination instantiate cumulativity axiomEquality setEquality dependent_set_memberEquality inrFormation addEquality hyp_replacement universeEquality inlFormation minusEquality productEquality

Latex:
\mforall{}[G:Groupoid].  \mforall{}[I:Cname  List].  \mforall{}[J:nameset(I)  List].  \mforall{}[j:nameset(J)].  \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].
\mforall{}[box:open\_box(cubical-nerve(cat(G));I;J;x;i)].  \mforall{}[y:nameset(I)].
\mforall{}[c:\{c:name-morph(I;[])|  (c  y)  =  0\}  ].
    nerve\_box\_edge1(G;box;x;i;j;c;y)  \mmember{}  cat-arrow(cat(G))  nerve\_box\_label(box;c) 
                                                                          nerve\_box\_label(box;flip(c;y)) 
    supposing  (\mforall{}j'\mmember{}J.j'  =  j)



Date html generated: 2017_10_05-PM-03_41_31
Last ObjectModification: 2017_07_28-AM-11_26_47

Theory : cubical!sets


Home Index