Nuprl Lemma : 1-dim-cube-endpoints
∀k:ℕ. ∀c:ℚCube(k).
  ((dim(c) = 1 ∈ ℤ)
  
⇒ (∃a,b:ℚCube(k)
       (a ≤ c
       ∧ b ≤ c
       ∧ (dim(a) = 0 ∈ ℤ)
       ∧ (dim(b) = 0 ∈ ℤ)
       ∧ (∀p,q:ℝ^k.  ((¬¬in-rat-cube(k;p;a)) 
⇒ (¬¬in-rat-cube(k;q;b)) 
⇒ p ≠ q))
       ∧ (∀f:ℚCube(k). (f ≤ c 
⇒ (dim(f) = 0 ∈ ℤ) 
⇒ ((f = a ∈ ℚCube(k)) ∨ (f = b ∈ ℚCube(k))))))))
Proof
Definitions occuring in Statement : 
in-rat-cube: in-rat-cube(k;p;c)
, 
real-vec-sep: a ≠ b
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
, 
rat-cube-dimension: dim(c)
, 
rat-cube-face: c ≤ d
, 
rational-cube: ℚCube(k)
Definitions unfolded in proof : 
concat: concat(ll)
, 
less_than': less_than'(a;b)
, 
so_apply: x[s1;s2;s3]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
append: as @ bs
, 
nat_plus: ℕ+
, 
lt_int: i <z j
, 
from-upto: [n, m)
, 
upto: upto(n)
, 
sq_stable: SqStable(P)
, 
mapfilter: mapfilter(f;P;L)
, 
rat-cube-faces: rat-cube-faces(k;c)
, 
pi2: snd(t)
, 
rat-interval-dimension: dim(I)
, 
rat-point-interval: [a]
, 
lower-rc-face: lower-rc-face(c;j)
, 
upper-rc-face: upper-rc-face(c;j)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
pi1: fst(t)
, 
rational-interval: ℚInterval
, 
real-vec: ℝ^n
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
decidable: Dec(P)
, 
nequal: a ≠ b ∈ T 
, 
assert: ↑b
, 
bnot: ¬bb
, 
top: Top
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
ge: i ≥ j 
, 
nat: ℕ
, 
less_than: a < b
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
rational-cube: ℚCube(k)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
prop: ℙ
, 
squash: ↓T
, 
cand: A c∧ B
, 
exists: ∃x:A. B[x]
, 
false: False
, 
true: True
, 
bfalse: ff
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
guard: {T}
, 
sq_type: SQType(T)
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rat-cube-dimension: dim(c)
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
member_singleton, 
cons_member, 
reduce_nil_lemma, 
reduce_cons_lemma, 
map_nil_lemma, 
map_cons_lemma, 
istype-false, 
int_seg_subtype_nat, 
list_ind_nil_lemma, 
list_ind_cons_lemma, 
filter_cons_lemma, 
filter_append, 
nil_wf, 
cons_wf, 
subtype_rel_list, 
subtract_wf, 
append_wf, 
upto_decomp1, 
list_subtype_base, 
list_wf, 
subtract-1-ge-0, 
less_than_wf, 
assert_wf, 
iff_weakening_uiff, 
filter_nil_lemma, 
assert_of_lt_int, 
lt_int_wf, 
ge_wf, 
decidable__equal_int_seg, 
sq_stable__l_member, 
istype-assert, 
l_member_wf, 
istype-less_than, 
istype-le, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_formula_prop_le_lemma, 
intformle_wf, 
decidable__le, 
upto_wf, 
filter-sq, 
member-rat-cube-faces, 
qless_wf, 
qless_irreflexivity, 
qle_weakening_eq_qorder, 
qless_transitivity_2_qorder, 
assert-q_less-eq, 
q_less_wf, 
rneq_wf, 
rneq-rat2real, 
real-vec-sep-iff-rneq, 
rational-interval_wf, 
int_seg_wf, 
rat2real_wf, 
real-vec-sep_functionality, 
not-not-in-0-dim-cube, 
istype-nat, 
rational-cube_wf, 
real-vec-sep_wf, 
rat-cube-face_wf, 
lelt_wf, 
set_subtype_base, 
rat-cube-dimension_wf, 
real-vec_wf, 
in-rat-cube_wf, 
upper-rc-face-dimension, 
int_term_value_subtract_lemma, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
intformnot_wf, 
decidable__equal_int, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_cases_sqequal, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformand_wf, 
full-omega-unsat, 
nat_properties, 
int_seg_properties, 
assert_of_eq_int, 
rat-interval-dimension_wf, 
eq_int_wf, 
iff_weakening_equal, 
subtype_rel_self, 
lower-rc-face-dimension, 
istype-universe, 
true_wf, 
squash_wf, 
equal_wf, 
upper-rc-face-is-face, 
lower-rc-face-is-face, 
upper-rc-face_wf, 
lower-rc-face_wf, 
rat-cube-dimension-1, 
int_subtype_base, 
assert_of_bnot, 
eqff_to_assert, 
eqtt_to_assert, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases, 
inhabited-rat-cube_wf
Rules used in proof : 
inrFormation_alt, 
inlFormation_alt, 
functionIsTypeImplies, 
axiomSqEquality, 
intWeakElimination, 
setEquality, 
applyLambdaEquality, 
setIsType, 
dependent_set_memberEquality_alt, 
functionEquality, 
unionIsType, 
productIsType, 
sqequalBase, 
addEquality, 
minusEquality, 
functionIsType, 
promote_hyp, 
equalityIstype, 
isect_memberEquality_alt, 
int_eqEquality, 
approximateComputation, 
equalityElimination, 
baseClosed, 
imageMemberEquality, 
rename, 
setElimination, 
universeEquality, 
inhabitedIsType, 
universeIsType, 
imageElimination, 
lambdaEquality_alt, 
applyEquality, 
independent_pairFormation, 
dependent_pairFormation_alt, 
voidElimination, 
natural_numberEquality, 
intEquality, 
sqequalRule, 
productElimination, 
independent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
independent_isectElimination, 
cumulativity, 
instantiate, 
unionElimination, 
because_Cache, 
dependent_functionElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
extract_by_obid, 
introduction, 
sqequalHypSubstitution, 
cut, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}k:\mBbbN{}.  \mforall{}c:\mBbbQ{}Cube(k).
    ((dim(c)  =  1)
    {}\mRightarrow{}  (\mexists{}a,b:\mBbbQ{}Cube(k)
              (a  \mleq{}  c
              \mwedge{}  b  \mleq{}  c
              \mwedge{}  (dim(a)  =  0)
              \mwedge{}  (dim(b)  =  0)
              \mwedge{}  (\mforall{}p,q:\mBbbR{}\^{}k.    ((\mneg{}\mneg{}in-rat-cube(k;p;a))  {}\mRightarrow{}  (\mneg{}\mneg{}in-rat-cube(k;q;b))  {}\mRightarrow{}  p  \mneq{}  q))
              \mwedge{}  (\mforall{}f:\mBbbQ{}Cube(k).  (f  \mleq{}  c  {}\mRightarrow{}  (dim(f)  =  0)  {}\mRightarrow{}  ((f  =  a)  \mvee{}  (f  =  b)))))))
Date html generated:
2019_10_30-AM-10_13_32
Last ObjectModification:
2019_10_28-PM-04_51_36
Theory : real!vectors
Home
Index