Nuprl Lemma : 1-dim-cube-endpoints

k:ℕ. ∀c:ℚCube(k).
  ((dim(c) 1 ∈ ℤ)
   (∃a,b:ℚCube(k)
       (a ≤ c
       ∧ b ≤ c
       ∧ (dim(a) 0 ∈ ℤ)
       ∧ (dim(b) 0 ∈ ℤ)
       ∧ (∀p,q:ℝ^k.  ((¬¬in-rat-cube(k;p;a))  (¬¬in-rat-cube(k;q;b))  p ≠ q))
       ∧ (∀f:ℚCube(k). (f ≤  (dim(f) 0 ∈ ℤ ((f a ∈ ℚCube(k)) ∨ (f b ∈ ℚCube(k))))))))


Proof




Definitions occuring in Statement :  in-rat-cube: in-rat-cube(k;p;c) real-vec-sep: a ≠ b real-vec: ^n nat: all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q and: P ∧ Q natural_number: $n int: equal: t ∈ T rat-cube-dimension: dim(c) rat-cube-face: c ≤ d rational-cube: Cube(k)
Definitions unfolded in proof :  concat: concat(ll) less_than': less_than'(a;b) so_apply: x[s1;s2;s3] so_lambda: so_lambda(x,y,z.t[x; y; z]) append: as bs nat_plus: + lt_int: i <j from-upto: [n, m) upto: upto(n) sq_stable: SqStable(P) mapfilter: mapfilter(f;P;L) rat-cube-faces: rat-cube-faces(k;c) pi2: snd(t) rat-interval-dimension: dim(I) rat-point-interval: [a] lower-rc-face: lower-rc-face(c;j) upper-rc-face: upper-rc-face(c;j) rev_uimplies: rev_uimplies(P;Q) pi1: fst(t) rational-interval: Interval real-vec: ^n so_apply: x[s] so_lambda: λ2x.t[x] decidable: Dec(P) nequal: a ≠ b ∈  assert: b bnot: ¬bb top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A ge: i ≥  nat: less_than: a < b it: unit: Unit bool: 𝔹 rational-cube: Cube(k) rev_implies:  Q iff: ⇐⇒ Q subtype_rel: A ⊆B le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} prop: squash: T cand: c∧ B exists: x:A. B[x] false: False true: True bfalse: ff btrue: tt ifthenelse: if then else fi  and: P ∧ Q uiff: uiff(P;Q) guard: {T} sq_type: SQType(T) uimplies: supposing a or: P ∨ Q uall: [x:A]. B[x] member: t ∈ T rat-cube-dimension: dim(c) implies:  Q all: x:A. B[x]
Lemmas referenced :  member_singleton cons_member reduce_nil_lemma reduce_cons_lemma map_nil_lemma map_cons_lemma istype-false int_seg_subtype_nat list_ind_nil_lemma list_ind_cons_lemma filter_cons_lemma filter_append nil_wf cons_wf subtype_rel_list subtract_wf append_wf upto_decomp1 list_subtype_base list_wf subtract-1-ge-0 less_than_wf assert_wf iff_weakening_uiff filter_nil_lemma assert_of_lt_int lt_int_wf ge_wf decidable__equal_int_seg sq_stable__l_member istype-assert l_member_wf istype-less_than istype-le int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_le_lemma intformle_wf decidable__le upto_wf filter-sq member-rat-cube-faces qless_wf qless_irreflexivity qle_weakening_eq_qorder qless_transitivity_2_qorder assert-q_less-eq q_less_wf rneq_wf rneq-rat2real real-vec-sep-iff-rneq rational-interval_wf int_seg_wf rat2real_wf real-vec-sep_functionality not-not-in-0-dim-cube istype-nat rational-cube_wf real-vec-sep_wf rat-cube-face_wf lelt_wf set_subtype_base rat-cube-dimension_wf real-vec_wf in-rat-cube_wf upper-rc-face-dimension int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf decidable__equal_int neg_assert_of_eq_int assert-bnot bool_cases_sqequal int_formula_prop_wf int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma istype-void int_formula_prop_and_lemma istype-int itermConstant_wf itermVar_wf intformeq_wf intformand_wf full-omega-unsat nat_properties int_seg_properties assert_of_eq_int rat-interval-dimension_wf eq_int_wf iff_weakening_equal subtype_rel_self lower-rc-face-dimension istype-universe true_wf squash_wf equal_wf upper-rc-face-is-face lower-rc-face-is-face upper-rc-face_wf lower-rc-face_wf rat-cube-dimension-1 int_subtype_base assert_of_bnot eqff_to_assert eqtt_to_assert bool_subtype_base bool_wf subtype_base_sq bool_cases inhabited-rat-cube_wf
Rules used in proof :  inrFormation_alt inlFormation_alt functionIsTypeImplies axiomSqEquality intWeakElimination setEquality applyLambdaEquality setIsType dependent_set_memberEquality_alt functionEquality unionIsType productIsType sqequalBase addEquality minusEquality functionIsType promote_hyp equalityIstype isect_memberEquality_alt int_eqEquality approximateComputation equalityElimination baseClosed imageMemberEquality rename setElimination universeEquality inhabitedIsType universeIsType imageElimination lambdaEquality_alt applyEquality independent_pairFormation dependent_pairFormation_alt voidElimination natural_numberEquality intEquality sqequalRule productElimination independent_functionElimination equalitySymmetry equalityTransitivity independent_isectElimination cumulativity instantiate unionElimination because_Cache dependent_functionElimination hypothesis hypothesisEquality thin isectElimination extract_by_obid introduction sqequalHypSubstitution cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}c:\mBbbQ{}Cube(k).
    ((dim(c)  =  1)
    {}\mRightarrow{}  (\mexists{}a,b:\mBbbQ{}Cube(k)
              (a  \mleq{}  c
              \mwedge{}  b  \mleq{}  c
              \mwedge{}  (dim(a)  =  0)
              \mwedge{}  (dim(b)  =  0)
              \mwedge{}  (\mforall{}p,q:\mBbbR{}\^{}k.    ((\mneg{}\mneg{}in-rat-cube(k;p;a))  {}\mRightarrow{}  (\mneg{}\mneg{}in-rat-cube(k;q;b))  {}\mRightarrow{}  p  \mneq{}  q))
              \mwedge{}  (\mforall{}f:\mBbbQ{}Cube(k).  (f  \mleq{}  c  {}\mRightarrow{}  (dim(f)  =  0)  {}\mRightarrow{}  ((f  =  a)  \mvee{}  (f  =  b)))))))



Date html generated: 2019_10_30-AM-10_13_32
Last ObjectModification: 2019_10_28-PM-04_51_36

Theory : real!vectors


Home Index