Nuprl Lemma : ratio-test-corollary

x:ℕ ⟶ ℝ
  ((∀n:ℕx[n] ≠ r0)  (∀L:ℝ(lim n→∞.|(x[n 1]/x[n])|  (((L < r1)  Σn.x[n]↓) ∧ ((r1 < L)  Σn.x[n]↑)))))


Proof




Definitions occuring in Statement :  series-diverges: Σn.x[n]↑ series-converges: Σn.x[n]↓ converges-to: lim n→∞.x[n] y rdiv: (x/y) rneq: x ≠ y rless: x < y rabs: |x| int-to-real: r(n) real: nat: so_apply: x[s] all: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q and: P ∧ Q cand: c∧ B prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top rneq: x ≠ y guard: {T} uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 rless: x < y sq_exists: x:A [B[x]] nat_plus: + iff: ⇐⇒ Q rev_implies:  Q subtype_rel: A ⊆B real: sq_stable: SqStable(P) squash: T rdiv: (x/y) rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y converges-to: lim n→∞.x[n] y rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B int_upper: {i...} itermConstant: "const" true: True less_than': less_than'(a;b) subtract: m
Lemmas referenced :  ratio-test-ext rless_wf int-to-real_wf converges-to_wf rabs_wf rdiv_wf nat_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf real_wf all_wf rneq_wf small-reciprocal-real rless-implies-rless rsub_wf itermSubtract_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_const_lemma real_term_value_var_lemma zero-rleq-rabs sq_stable__less_than rless-int nat_plus_properties decidable__lt satisfiable-full-omega-tt intformless_wf int_formula_prop_less_lemma constant-rleq-limit radd-preserves-rless radd_wf rmul_wf rinv_wf2 itermMultiply_wf rless_functionality req_transitivity radd_functionality req_weakening rinv-as-rdiv real_term_value_add_lemma real_term_value_mul_lemma trivial-rleq-radd rleq-int-fractions2 int_term_value_mul_lemma rleq_functionality_wrt_implies rleq_weakening_equal radd_functionality_wrt_rleq sq_stable__all rleq_wf sq_stable__rleq less_than'_wf nat_plus_wf squash_wf int_upper_wf upper_subtype_nat sq_stable__le int_upper_properties rpositive-rless rabs-positive rabs-difference-bound-rleq rleq_functionality rabs_functionality rsub_functionality rabs-rdiv rmul_preserves_rleq2 rleq_weakening_rless equal_wf rmul_comm rleq-implies-rleq rmul_functionality radd_comm rmul-rinv3 real_term_polynomial less_than_wf le-add-cancel add-zero add-associates add_functionality_wrt_le add-commutes minus-one-mul-top zero-add minus-one-mul minus-add condition-implies-le less-iff-le not-lt-2 false_wf int_upper_subtype_nat rless-int-fractions rminus_wf itermMinus_wf real_term_value_minus_lemma rmul_preserves_rless rless_transitivity2 radd-preserves-rleq
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination natural_numberEquality independent_pairFormation sqequalRule lambdaEquality applyEquality functionExtensionality dependent_set_memberEquality addEquality setElimination rename unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality because_Cache functionEquality productElimination inrFormation computeAll imageMemberEquality baseClosed imageElimination multiplyEquality equalityTransitivity equalitySymmetry independent_pairEquality minusEquality axiomEquality productEquality isect_memberFormation

Latex:
\mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}
    ((\mforall{}n:\mBbbN{}.  x[n]  \mneq{}  r0)
    {}\mRightarrow{}  (\mforall{}L:\mBbbR{}.  (lim  n\mrightarrow{}\minfty{}.|(x[n  +  1]/x[n])|  =  L  {}\mRightarrow{}  (((L  <  r1)  {}\mRightarrow{}  \mSigma{}n.x[n]\mdownarrow{})  \mwedge{}  ((r1  <  L)  {}\mRightarrow{}  \mSigma{}n.x[n]\muparrow{})))))



Date html generated: 2019_10_29-AM-10_27_03
Last ObjectModification: 2018_08_23-AM-11_25_24

Theory : reals


Home Index