Nuprl Lemma : cantor-interval-req

a,b:ℝ. ∀f:ℕ ⟶ 𝔹. ∀n:ℕ.
  (((fst(cantor-interval(a;b;f;n))) (fst(cantor_ivl(a;b;f;n))))
  ∧ ((snd(cantor-interval(a;b;f;n))) (snd(cantor_ivl(a;b;f;n)))))


Proof




Definitions occuring in Statement :  cantor-interval: cantor-interval(a;b;f;n) cantor_ivl: cantor_ivl(a;b;f;n) req: y real: nat: bool: 𝔹 pi1: fst(t) pi2: snd(t) all: x:A. B[x] and: P ∧ Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  cand: c∧ B has-value: (a)↓ assert: b bnot: ¬bb bfalse: ff ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 nat_plus: + req_int_terms: t1 ≡ t2 rdiv: (x/y) rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) squash: T less_than: a < b rev_implies:  Q iff: ⇐⇒ Q rneq: x ≠ y nequal: a ≠ b ∈  true: True int_nzero: -o pi2: snd(t) guard: {T} sq_type: SQType(T) subtract: m pi1: fst(t) efficient-exp-ext fastexp: i^n primrec: primrec(n;b;c) unit-interval-fan: unit-interval-fan(f;n) cantor-interval: cantor-interval(a;b;f;n) cantor_ivl: cantor_ivl(a;b;f;n) or: P ∨ Q decidable: Dec(P) so_apply: x[s] so_lambda: λ2x.t[x] less_than': less_than'(a;b) le: A ≤ B subtype_rel: A ⊆B prop: and: P ∧ Q top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a ge: i ≥  false: False implies:  Q nat: member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x]
Lemmas referenced :  rmul_comm int-rinv-cancel real_term_value_minus_lemma radd-int rsub_functionality rsub-int req_inversion rmul-rinv3 rinv-mul-as-rdiv exp-positive-stronger itermMinus_wf rsub_wf rminus_wf exp-positive rmul_preserves_req rmul-int exp-fastexp assert_of_lt_int primrec-unroll int_term_value_mul_lemma decidable__equal_int exp_step req-int req_wf exp-non-zero exp_wf3 int_formula_prop_eq_lemma intformeq_wf rneq-int exp_wf2 assert-bnot bool_subtype_base bool_cases_sqequal eqff_to_assert eqtt_to_assert exp_wf_nat_plus int-value-type set-value-type nat_plus_wf value-type-has-value unit-interval-fan_wf lt_int_wf real_term_value_var_lemma real_term_value_const_lemma real_term_value_add_lemma real_term_value_mul_lemma real_term_value_sub_lemma real_polynomial_null rmul-identity1 rinv1 rmul_functionality req_transitivity int-rmul-req radd_functionality rdiv_functionality int-rdiv-req req_functionality req_weakening req-iff-rsub-is-0 itermAdd_wf itermMultiply_wf rinv_wf2 rmul_wf rless_wf rless-int int-to-real_wf rdiv_wf int-rmul_wf radd_wf nequal_wf true_wf equal-wf-base int-rdiv_wf int_subtype_base subtype_base_sq primrec0_lemma int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le le_wf pi2_wf cantor_ivl_wf equal_wf pi1_wf_top real_wf subtype_rel_self false_wf int_seg_subtype_nat int_seg_wf bool_wf nat_wf subtype_rel_function cantor-interval_wf req_witness less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf full-omega-unsat nat_properties efficient-exp-ext
Rules used in proof :  minusEquality promote_hyp equalityElimination multiplyEquality addEquality imageMemberEquality inrFormation baseClosed addLevel cumulativity instantiate sqleReflexivity callbyvalueReduce functionEquality unionElimination dependent_set_memberEquality functionExtensionality equalitySymmetry equalityTransitivity productEquality because_Cache applyEquality independent_pairEquality productElimination independent_pairFormation sqequalRule voidEquality voidElimination isect_memberEquality dependent_functionElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_functionElimination approximateComputation independent_isectElimination natural_numberEquality intWeakElimination rename setElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}a,b:\mBbbR{}.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  \mforall{}n:\mBbbN{}.
    (((fst(cantor-interval(a;b;f;n)))  =  (fst(cantor\_ivl(a;b;f;n))))
    \mwedge{}  ((snd(cantor-interval(a;b;f;n)))  =  (snd(cantor\_ivl(a;b;f;n)))))



Date html generated: 2018_05_22-PM-02_09_33
Last ObjectModification: 2018_05_21-AM-00_48_41

Theory : reals


Home Index