Nuprl Lemma : cantor-interval-req
∀a,b:ℝ. ∀f:ℕ ⟶ 𝔹. ∀n:ℕ.
  (((fst(cantor-interval(a;b;f;n))) = (fst(cantor_ivl(a;b;f;n))))
  ∧ ((snd(cantor-interval(a;b;f;n))) = (snd(cantor_ivl(a;b;f;n)))))
Proof
Definitions occuring in Statement : 
cantor-interval: cantor-interval(a;b;f;n)
, 
cantor_ivl: cantor_ivl(a;b;f;n)
, 
req: x = y
, 
real: ℝ
, 
nat: ℕ
, 
bool: 𝔹
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
cand: A c∧ B
, 
has-value: (a)↓
, 
assert: ↑b
, 
bnot: ¬bb
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
nat_plus: ℕ+
, 
req_int_terms: t1 ≡ t2
, 
rdiv: (x/y)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uiff: uiff(P;Q)
, 
squash: ↓T
, 
less_than: a < b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
rneq: x ≠ y
, 
nequal: a ≠ b ∈ T 
, 
true: True
, 
int_nzero: ℤ-o
, 
pi2: snd(t)
, 
guard: {T}
, 
sq_type: SQType(T)
, 
subtract: n - m
, 
pi1: fst(t)
, 
efficient-exp-ext, 
fastexp: i^n
, 
primrec: primrec(n;b;c)
, 
unit-interval-fan: unit-interval-fan(f;n)
, 
cantor-interval: cantor-interval(a;b;f;n)
, 
cantor_ivl: cantor_ivl(a;b;f;n)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
and: P ∧ Q
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
uimplies: b supposing a
, 
ge: i ≥ j 
, 
false: False
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
rmul_comm, 
int-rinv-cancel, 
real_term_value_minus_lemma, 
radd-int, 
rsub_functionality, 
rsub-int, 
req_inversion, 
rmul-rinv3, 
rinv-mul-as-rdiv, 
exp-positive-stronger, 
itermMinus_wf, 
rsub_wf, 
rminus_wf, 
exp-positive, 
rmul_preserves_req, 
rmul-int, 
exp-fastexp, 
assert_of_lt_int, 
primrec-unroll, 
int_term_value_mul_lemma, 
decidable__equal_int, 
exp_step, 
req-int, 
req_wf, 
exp-non-zero, 
exp_wf3, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
rneq-int, 
exp_wf2, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
eqff_to_assert, 
eqtt_to_assert, 
exp_wf_nat_plus, 
int-value-type, 
set-value-type, 
nat_plus_wf, 
value-type-has-value, 
unit-interval-fan_wf, 
lt_int_wf, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
real_term_value_add_lemma, 
real_term_value_mul_lemma, 
real_term_value_sub_lemma, 
real_polynomial_null, 
rmul-identity1, 
rinv1, 
rmul_functionality, 
req_transitivity, 
int-rmul-req, 
radd_functionality, 
rdiv_functionality, 
int-rdiv-req, 
req_functionality, 
req_weakening, 
req-iff-rsub-is-0, 
itermAdd_wf, 
itermMultiply_wf, 
rinv_wf2, 
rmul_wf, 
rless_wf, 
rless-int, 
int-to-real_wf, 
rdiv_wf, 
int-rmul_wf, 
radd_wf, 
nequal_wf, 
true_wf, 
equal-wf-base, 
int-rdiv_wf, 
int_subtype_base, 
subtype_base_sq, 
primrec0_lemma, 
int_term_value_subtract_lemma, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
intformnot_wf, 
subtract_wf, 
decidable__le, 
le_wf, 
pi2_wf, 
cantor_ivl_wf, 
equal_wf, 
pi1_wf_top, 
real_wf, 
subtype_rel_self, 
false_wf, 
int_seg_subtype_nat, 
int_seg_wf, 
bool_wf, 
nat_wf, 
subtype_rel_function, 
cantor-interval_wf, 
req_witness, 
less_than_wf, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
full-omega-unsat, 
nat_properties, 
efficient-exp-ext
Rules used in proof : 
minusEquality, 
promote_hyp, 
equalityElimination, 
multiplyEquality, 
addEquality, 
imageMemberEquality, 
inrFormation, 
baseClosed, 
addLevel, 
cumulativity, 
instantiate, 
sqleReflexivity, 
callbyvalueReduce, 
functionEquality, 
unionElimination, 
dependent_set_memberEquality, 
functionExtensionality, 
equalitySymmetry, 
equalityTransitivity, 
productEquality, 
because_Cache, 
applyEquality, 
independent_pairEquality, 
productElimination, 
independent_pairFormation, 
sqequalRule, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
natural_numberEquality, 
intWeakElimination, 
rename, 
setElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}a,b:\mBbbR{}.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  \mforall{}n:\mBbbN{}.
    (((fst(cantor-interval(a;b;f;n)))  =  (fst(cantor\_ivl(a;b;f;n))))
    \mwedge{}  ((snd(cantor-interval(a;b;f;n)))  =  (snd(cantor\_ivl(a;b;f;n)))))
Date html generated:
2018_05_22-PM-02_09_33
Last ObjectModification:
2018_05_21-AM-00_48_41
Theory : reals
Home
Index